EERC

EERC Legacy Brine Pit Remediation Demonstration Project

Briefing to the Oil & Gas Research Council

Bismarck, North Dakota Monday, May 9, 2016

Jay C. Almlie Principal Engineer, *Mid- and Downstream Oil & Gas*

Bull B-1 Site History

• Three associated Madison wells:

- Bull B1R (5318) spudded in 1973, P&A in 2004.
- Bull B1 (2801) spudded in 1961, listed as inactive.
- Bull B7-23H (15200) spudded in 2001, listed as active.
- Legacy brine evaporation pit from early well activities
 - Evaporation pits were allowed until the late 1970s, when they began to be phased out.
- Brine impacts identified at Bull B1 by NDIC in 2004
- NDIC-approved remediation activities completed in 2007
 - No record of areas that were remediated.
- Ongoing soil sampling in 2008, 2010, and 2014 prior to EERC involvement.

Original Approach

Critical Challenges.

Practical Solutions.

Need for a New Approach

- Site characterization, soil sampling, and dramatic changes within the site operator's organization now indicate that the proposed approach is infeasible.
- COP/TriHydro 2014 report:
 - ~3.4 acres are impacted by produced brine water, distributed among three distinct areas.
 - Brine pit measured to 24 in.
- EERC fall 2015 field sampling:
 - ≈7 acres impacted.
 - Brine pit down to 15^+ ft below surface.
 - Brine pit larger and deeper than expected (migration + incomplete previous analysis).

New Understanding of Selected Site

Challenges to Original Plan

- Deeper and wider contamination more than <u>triples</u> the volume of soil needing treatment.
- Test wells to 210' and 320' have produced sufficient water quality, but <u>insufficient flow rate</u> for irrigation ... water must now be obtained at greatly increased cost (rural water system).
- Extremely <u>shallow</u> current water table sits 2'–3' below surface, immersing nearly the entire concentrated pit.
- Current site operator has shut in all OG and SWD wells in the area due to oil price environment, and has laid off workers.
- Long-term leachate disposal needs created by scope adjustment create a post-project liability.

Progression of Options Investigated

EERC RECOMMENDATION

OPTION A Current Site Pipelined Irrigation Pipelined SWD Fewer Unknowns

Revised Approach – Option A

Site Cross Section – Option A

Pipeline Routing – Option A

Irrigation Pipeline

Incremental Costs – Option A

- Additional project costs
 - Significantly more drain tile and sumps (AWPSRF has agreed to assist)
 - Pumping test to determine effective soil permeability
 - Multiple evaporation pit deep sumps
 - Install pipeline to provide irrigation water via county ditches from rural water system interconnect 1 ½ miles south of site
 - Purchase irrigation water from RWS
 - Install pipeline to dispose of leachate (SWD) via county ditches to SWD well 1 ¼ miles southwest of site
 - Dispose of leachate at commercial SWD well
- Unknowns
 - Disposal volume (pumping test will tell)
 - Cost of disposal
 - Cost of SWD pipeline installation
 - ROW issues not fully understood

Incremental Cost Component	Quote?	Cost
Remediation work (incl. Irrgtn.sys)		\$260,000
Pit pumping test		\$25,000
Drain tile	\checkmark	\$155,000
Drain tile sumps	\checkmark	\$25,000
Deep sumps in pit	\checkmark	\$20,000
Irrigation pipeline	\checkmark	\$60,000
Irrigation water supply	\checkmark	\$70,000
SWD pipeline		\$40,000
SWD injection		\$160,000
Electrical power		\$30,000
Subtotal		\$845,000
AWPSRF Assistance		- \$200,000
Net Incremental Cost		\$645,000

End Game – Option A

- We wish to continue this project through the 2017 growing season.
 - Seed fall 2016 or spring 2017
 - Understand trends of salt migration from brine pit over 2 yr.
 - Brine leach will continue from drain tile beyond project end.
 - Progress will stop and possibly reverse when we stop pumping drain tile system.
- BIG QUESTION: How much pit remediation will be accomplished in the 2-year project span?
 - Planned effort will indicate whether return to productive soil is as simple as running drain tile pump (virtual barrier) for more years.

ALTERNATIVE (NOT OUR RECOMMENDATION)

OPTION B Alternate Legacy Site Pipelined Irrigation Onsite SWD More Unknowns

Drastically Changed Approach – Option B

+ Alternate site is close to commercial SWD → avoid costs and liability of SWD pipeline
+ Cost of irrigation pipeline installation decreased slightly

- New site characterization costs similar to those incurred at originally-selected site
- Unknowns related to lack of knowledge on new site
 - Extent of contamination?
 - ➤ Water table?
 - Can BMP approach be implemented here?
 - Pit conducive to deep sump approach?
 - Operator cooperation equal to original site?

Alternate Legacy Site – Adams SWD 1

End Game – Option B

- Larger unknowns based upon lack of site characterization
- Affected land may be less than Site A, but unknown
- May be able to accomplish the same goals as at Site A, but unknown
- Additional site characterization likely to extend project even further

CONTACT INFORMATION

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

World Wide Web: **www.undeerc.org** Telephone No. (701) 777-5260 Fax No. (701) 777-5181

Jay C. Almlie, *Principal Engineer, Mid- and Downstream Oil & Gas* jalmlie@undeerc.org

