# EERC NORTH DAKOTA

Energy & Environmental Research Center (EERC)

### The Bakken Production Optimization Program 2.0 Update

Presented to: Oil & Gas Research Council Bismarck, ND May 2, 2018

John Harju Vice President for Strategic Partnerships

Critical Challenges. Practical Solutions.

© 2018 University of North Dakota Energy & Environmental Research Center

### Agenda

- Budget
- Rich Gas EOR with Liberty Resource
- Refrac Study
- Statistical Analysis of Production Data
- Industry Support
  - Vapor Pressure
  - Remediation
- Produced Water Studies





2



## **BPOP 2.0 Budget**

|                       | Expected     | Actual Expenses |             |
|-----------------------|--------------|-----------------|-------------|
| Sponsors              | Budget       | as of 3/31/17   | Balance     |
| NDIC Share – Cash     | \$6,000,000  | \$2,147,769     | \$3,852,231 |
| Industry Share – Cash | \$600,000    | \$318,387       | \$281,613   |
| Marathon – In-Kind    | \$7,280,000  | \$4,749,086     | \$2,530,914 |
| Liberty – In-Kind*    | \$141,103    | \$141,103       | _           |
| DOE – Cash            | \$2,000,000  | \$274,317       | \$1,725,683 |
| Total                 | \$16,021,103 | \$7,630,662     | \$8,390,441 |

\* An estimate for the total expected in-kind cost share from Liberty is not available. Liberty will periodically report actual costs to the EERC, which will be subsequently presented in the quarterly report.



EERC. | UND NORTH DAKOTA.

3

## **Rich Gas EOR – Goals**

- Determine the ability of rich gas to mobilize Bakken oil
  - Increased oil production
  - · Alternative use of gas to flaring
- Assess how changing gas and fluid compositions affect reservoir and process
  facility performance
  - Increase in overall process efficiency
- Optimize future EOR design and operations through modeling and reservoir performance

4

Improved field-wide production







### **Rich Gas EOR – Activities and Highlights**

- · Lab studies of rich gas interactions with fluids and rocks
  - Ethane and propane showing promising results relative to CO<sub>2</sub>
- Detailed characterization of produced gas and fluids over time
  - · Baseline samples nearly completely acquired
- Iterative modeling of surface and subsurface components.
  - · Models built and numerous schemes simulated
- Pilot performance assessment





5

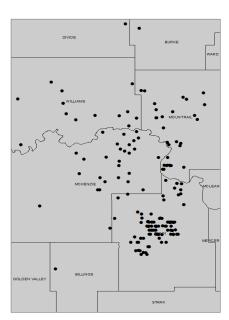
Critical Challenges. P

**Practical Solutions.** 

## **Rich Gas EOR – Next Steps**

- Rich gas injection imminent
  - Compressor arriving mid-May (capable of 4200 psi and 3 MMscf/day)
  - Injection start target for end of May with 1 well at 1.5 MMscf/day for 30 days
- Continued sampling and characterization of produced fluids






6

### **Refrac Performance Evaluation**

# Existing refracs in ND performing well (from production standpoint)

- Average uplift in daily oil production of 300 stb/day during 30 days following refrac
- Incremental EUR ranging from 85-260 Mstb
- Average decrease in GOR of 20% during 30 days following refrac
- Complete loss of three wells during refrac attempt
  - · Highlights operational risks



Surface location of evaluated wells

EERC. | UND NORTH DAKOTA.

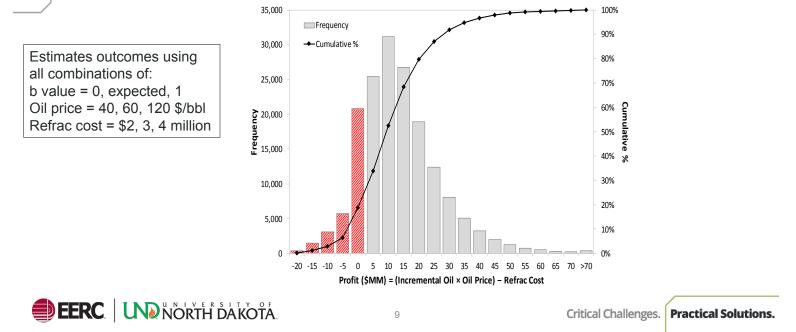
•

7

Critical Challenges.

**Practical Solutions.** 

### **Refrac Economic Evaluation**


- Statistical analysis shows potential for per well losses of \$15 million, to profit of over \$70 million
  - Based on simulations of all combinations of b values = 0, expected, and 1, oil price = 40, 60, and 120 usd/bbl, and cost of refrac = 2, 3, and 4 million dollars
- Dataset of 168 wells shows some positive potential in Bakken refracs, but...
- Current refrac dataset substantially influenced by wells of specific initial completion type
  - Limited inventory of openhole wells originally completed as a single stage remaining
  - Risk increases with increasingly complex completion methods



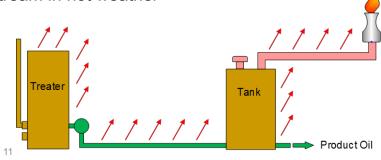
8

### **Refrac Economic Evaluation**

About 20% of predicted refracs in EERC analysis resulted in losses or no profit



### **Statistical Analysis of Bakken Production Data**


- Analyzed 400 wells completed in the Bakken and Three Forks Formations located across the Bakken Production System
  - 30 key completion and geologic variables observed at 6 and 60 months
  - Quantified the magnitude and effect of these variables (predictors)
- Multiple completion and geologic variables affect 6 month production
- Only 1 completion variable and multiple geologic variables affect 60 month production
  - Suggests geologic factors play greater roles over larger timescales
- · Results allow for improved well and field decision making

EERC. UND NORTH DAKOTA.

10

### **Crude Oil Vapor Pressure Management**

- **Goal**: Assist industry in understanding and optimizing vapor pressure management in surface production equipment
- Activities: worked with industry operators to gather data, develop computer models, and validate them with field data
  - Flash to atmospheric pressure in storage tanks greatly impacts oil vapor pressure
- Impact: determining optimal conditions for efficient operation will...
  - · Help compliance with the State and midstream operators in cold weather
  - · Minimize hydrocarbon losses to gas stream in hot weather



### **Crude Oil Vapor Pressure Management**

#### **Next Steps**

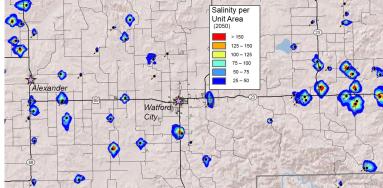
- · Conduct simulations and evaluate the impact of different variables on crude oil vapor pressure such as ambient conditions, insulation, and equipment configurations
- · Summarize findings prioritizing strategies to meet vapor pressure targets



12

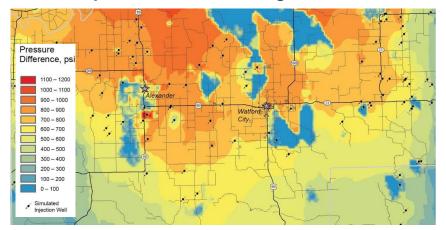
## **Ancillary Activities**

#### **Remediation Support**


- Providing information to the Hydrocarbon Remediation Task Force as subject-matter experts
- Work compiling and updating the North Dakota Remediation Resource Manual to additionally include hydrocarbon along with produced water remediation content



13


## Salt Water Disposal (SWD) Modeling

- **Goal**: evaluate the disposal potential of the Inyan Kara formation and to identify areas that may be conducive or problematic for future SWD operations
- Produced water requiring disposal:
  - 106 MM BBL in 2008
  - 456 MM BBL in 2017
- Activities: 3D simulations illustrate large overall storage potential with operational considerations, and increasing reservoir pressures potentially limiting some areas



### SWD Modeling – Next Steps

- Simplistic model being developed to assist with estimating the zone of influence of SWD wells
  - Could be used to assist in locating/siting SWD wells
- Continue to work with the State and BPOP membership to provide tools to assist with SWD and produced water management





## **CONTACT INFORMATION**

**Energy & Environmental Research Center** University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org

John Harju **Vice President for Strategic Partnerships** jharju@undeerc.org

701-777-5157



EERC. | UND NORTH DAKOTA.

17



