
G-058-114: Maximizing Production From Residual Oil Zones in Western North Dakota

> OGRP Update January 24, 2025 Bismarck, ND

Pre-project Recap

- Cobra purchases assets through bankruptcy in late 2018, begins to return wells to production & commences a strict fluid level & dynamometer program.
- In 2019, Cobra started increasing artificial lift capabilities to draw down back side fluid levels. As back side fluid levels decrease, total oil & water production increase, keeping consistent cuts.
- Cobra uses core data to recomplete multiple wells further down into the section to increase reservoir deliverability. In return further increasing artificial lift and making more total fluid at constant cuts.
- Due to consistent oil & water cuts, with some improved oil cuts, Cobra hypothesized these efforts to be manipulation of a ROZ.

- Standard conventional approach "Pop the Top"
- Cobra Oil & Gas ROZ approach (orange section)
- Rock data, petrophysical data, mudlog data, & production data support a Type II ROZ.

	,		Petroleum 1	ORAT Coservol	ORIES, INC. r Englacering EXAG	PAGE NO. 1		
RENV				SSION C LT GEL RTH DAK	NO OIL	DATE : FILE NO. : ANALYSTS : ELEVATION:	•	St
	CONVENTIONAL CORE ANALYSIS							CC
SAMP.	HT9 30	PERM. TO HORZ. VERTICAL	POR. FLUI FLO. OIL	SATS. WATER		DESCRIPTION		ap To
1 2 3 4 5 6	4573-74 4574-75 4575-76 4576-77 4577-78	0.92 64 7.2 104 0.15 42	13.5 12. 18.5 15. 12.0 17. 18.5 16. 6.5 3. 12.8 10.	2 23.2 5 35.2 5 35.2 6 35.2 2 60.9 9 34.2	CVF	LM FN XLN VUGGY CALC INF. LM FN XLN VUGGY CALC INF. LM FN XLN VUGGY CALC INF. LM FN XLN SCAT VUGS CALC INF. LM FN XLN SCAT VUGS CHKY LM FN XLN VUGS CALC XTAL	•	Co R(
9 10 11	4579-80 4580-81 4581-82 4582-83 4583-84	0.39 13 3.8 19 33	7,4 7, 20,7 23, 10,1 11, 10,2 8,1 11,3 18,1 11,9 14,1	7 23.7 9 31.8 3 29.2 5 36.9	CVF	LM FN XLN VUGS CALC XTAL LM OOL SCAT VUGS CALC INF. LM FN XLN VUGS CALC INF.	•	ye Ro
13 14 15 16 17 18	4585~86 4586-87 4587~88 4588-89	7.6 36 14 13 51 7.8	10.0 14.1 11.1 14.1 11.9 9.1 23.4 14.1 12.6 26.1	3 28.6 3 38.0 3 33.6 3 21.7	CVF	LM FN XLN SCAT VUGS CALC INF. LM FN XLN CALC INF. LM FN XLN VJGS CALC INF. LM FN XLN VJGS CALC INF. LM FN XLN VJGS CALC INF.		pe m
19 20 21 22 23	4590-91 4591-92 4592-93 4593-94	7.8 178 13 0.12 0.16 0.66	18.1 23. 12.5 14. 14.4 18. 9.0 17. 7.7 12. 8.8 8.	1 39.1 5 27.8 7 28.8 1 40.3	CVF CVF CVF	LM FN XLN VUGS CALC INF. LM FN XLN VUGS CALC INF.		pr su R(
24	4595-96	66 3.5	3.0 10.5 13.3	5. 50.3		LM FN XLN VUGS CALC INF. LM FN XLN VUGS LM FN XLN CALC INF.		

CVF CLOSED VERTICAL FRACTURE

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom, and for whose exclusive and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and omissions excepted); but Core Laboratories, Inc. and its officers and employeet, assume no responsibility and make no warranty or

- Standard conventional approach "Pop the Top"
- Cobra Oil & Gas ROZ approach (full yellow section)

Rock data,
petrophysical data,
mudlog data, &
production data
support a Type II
ROZ.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

CONVENTIONAL CORE ANALYSIS

RENVILLE COUNTY

DRLG. FLUID: SALT GEL NO OIL STATE : NORTH DAKOTA

FORMATION : MISSION CANYON

DATE FILE NO. : ANALYSTS : ELEVATION:

						_			
SAMP.	DEPTH		AIR (MD)	POR.			GR.		A
NO.	UC#TH	HORZ.	VERTICAL	FLD.	OIL	WATER	DNS.		DESCRIPTION
	the same and the same same			14.12.1Å	*****	111467 No.44 14		-	
26	4597=98	20	100	14.3	8.0	29,5			LM FN XLN CALC INF.
27	4598~99	38		14.6	9.3	42.6			LM FN XLN CALC INF.
28	4599 -0	2,6		13.3	11.6	26.0		CVF	LM FN XLN VUGS CALC INF.
29	4600 -1	200		15.2	11.2	31.0		CVF	LM FN XLN SCAT VUGS CALC INF.
30	4601 -2	11		11.5		28.8			
31	4602 -3	157	1.2.32					CVF	LM FN XLN SCAT VUGS CALC INF.
				21.7	14.0	29.7		CVF	LM EN XLN COL CALC INF.
32	4603 -4	250	6.15	18.3	17.2	27.4		CVF	LM FN XLN VUGS CALC INF.
33	4604 -5	31	1.1	17.9	12.8	28.8		CVF	LM FN XLN OOL CALC INF.
34	4605 -6	314		15.8	14.9	27.5		CVF	LM FN XLN OOL CALC INF
35	4606 -7	61		18.1	15.5	35.2	- A -	CVF	LM EN XLN CALC INF.
36	4607 -8	.93		15.2	17.4	32.4			
00	4608-4612			10.6	1/.4	9419	14		
37				1.2.1			- A -		NO ANALYSIS LS
37	4612-13	24		10.6		26.1	1 1	CVF	LM FN XLN CALC INF.
38	4613-14	6.5		7.0	3.0	62.7		CVF	LM V/FN XLN CALC INF.
39	4614-15	113		9.1	2.3	51,9		CVF	LM V/FN XLN CALC INF.
40	4615-16	41		8.9	1.1	43.2		CVF	LM V/FN XLN CALC INF.
gir.	4616-4623						12		NO ANALYSIS LS
41	4623+24	0,03		6.7	7.7	33.8		CVE	LM V/FN XLN CALC INF.
42	4624-25		· · ·				1.00	CVF	
46	1044#20	2.8		10.9	16.3	29.0	· · ·	CVF	LM V/FN XLN SUC CALC INF.
0.15						_			

CVF CLOSED VERTICAL FRACTURE

.

These analyses, opinions or interpretations are based on observations and materials applied by the client to whose, and for whose exclusive and coefficiential use, this supert is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and outlasions excepted); but Core Laboratories, Inc. and its officers and employees, atomn to responsibility and make no warranty or rememberships as to the modest him movement on another blance of use of a set of an other where and is connection with which such second is and a called uses

Standard conventional approach "Pop the Top"

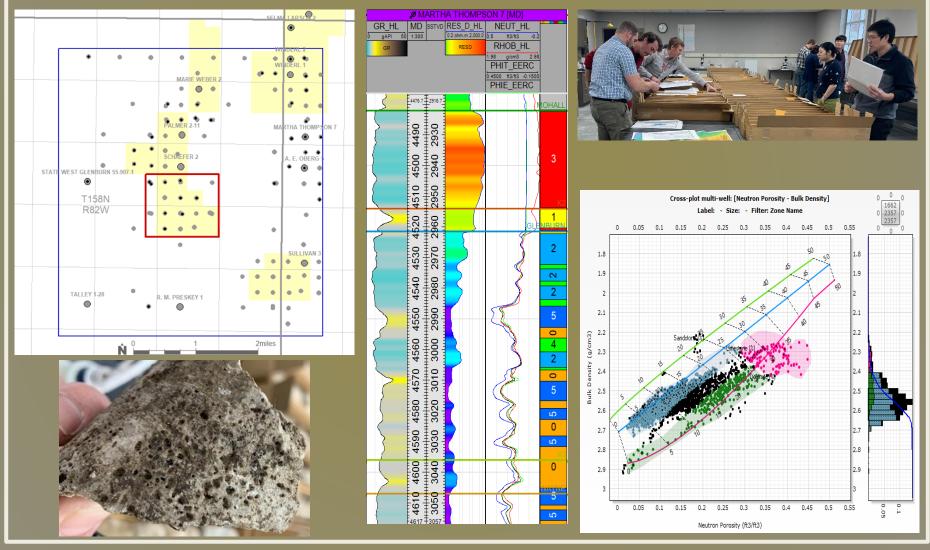
Cobra Oil & Gas ROZ approach (full yellow section)

Rock data, petrophysical data, mudlog data, & production data support a Type II ROZ.

PAGE NO. 2

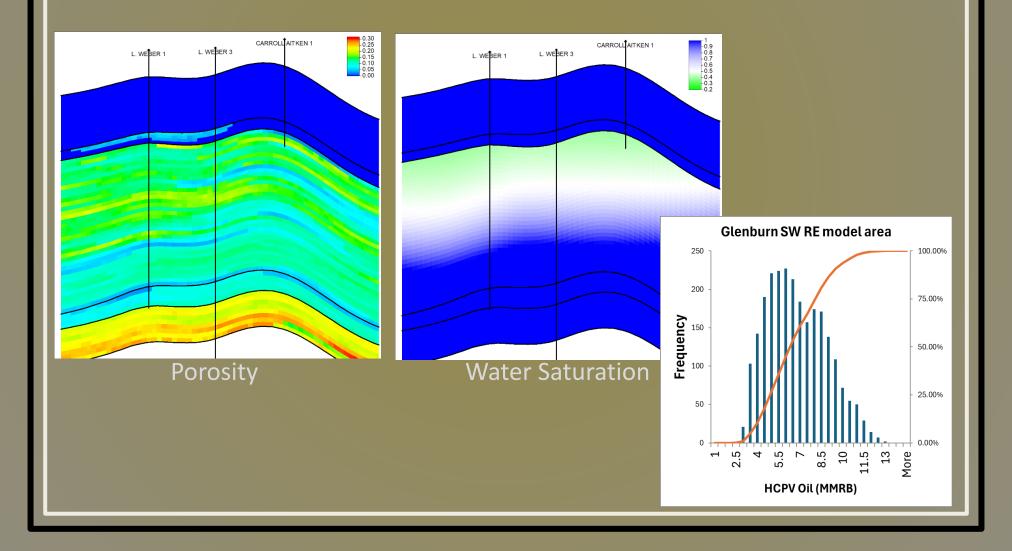
Project Summary

- Project Intent: Investigate methods and strategies to maximize oil recovery within Madison oil fields in western North Dakota
- Hypothesis: Using new and existing reservoir characterization and laboratory analytical data coupled with state-of-the-art static and dynamic computer modeling to design and implement pilot-scale field injection tests, optimized production strategies for **residual oil zones (ROZs)** of the Madison Group's Mission Canyon Formation can be developed.
- Draft Findings:
 - ROZ is not present in Glenburn Field; production is from transition zone oil with some wells experiencing water coning stranding oil.
 - Oil production can be maximized through the management of water coning, increased cumulative fluid flow, and pressure maintenance.

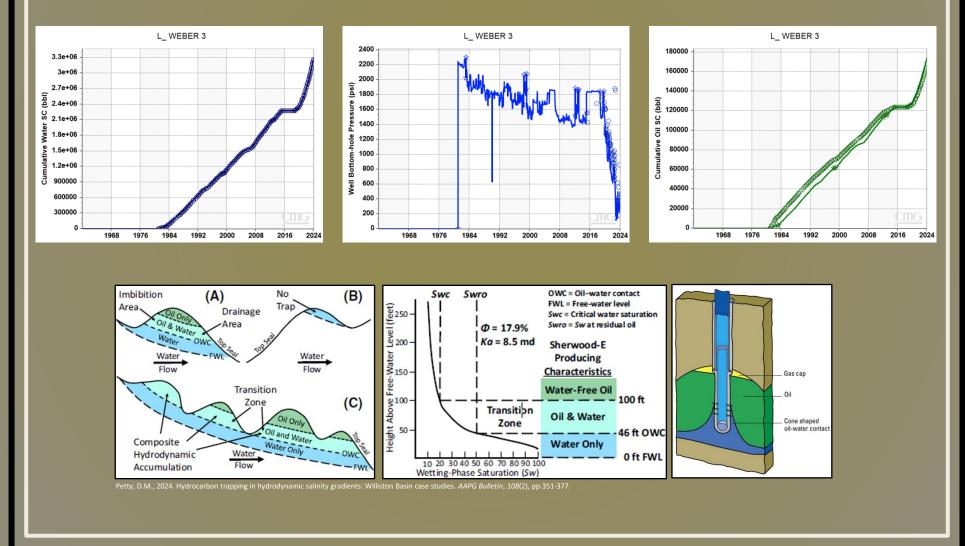


Task Summary

Project Task	Details	Status		
Task 1: Data Assembly	Data Audit	Complete		
TASK I. DALA ASSEIIIDIY	Core Workshop			
	Stratigraphy			
Task 2: Reservoir	Petrophysics	Complete		
Characterization	Geologic Model	Complete		
	Uncertainty Analysis			
Task 3: Numeric	History Matching	Complete		
Simulation	Optimization Scenarios	In Progress		
Simulation	Sensitivity Analysis	In Progress		
Task 4 – Data Collection	Field Activities	In Progress		
and Field Testing	Lab: Porosity and Permeability	Complete		
and Held Testing	Lab: Relative Permeability	In Progress		



Preliminary Results



Reservoir Characterization

Numeric Simulation

Task Summary

Project Task	Details	Status		
Task 1: Data Assembly	Data Audit	Complete		
TASK I. DALA ASSEIIIDIY	Core Workshop			
	Stratigraphy			
Task 2: Reservoir	Petrophysics	Complete		
Characterization	Geologic Model	Complete		
	Uncertainty Analysis			
Task 3: Numeric	History Matching	Complete		
Simulation	Optimization Scenarios	In Progress		
Simulation	Sensitivity Analysis	In Progress		
Task 4 – Data Collection	Field Activities	In Progress		
and Field Testing	Lab: Porosity and Permeability	Complete		
and Held Testing	Lab: Relative Permeability	In Progress		