EERC UND NORTH DAKOTA

Energy & Environmental Research Center (EERC)

OVERVIEW OF TWO EERC BAKKEN CO₂ EOR PROJECTS CONDUCTED FROM 2011 TO 2018

IMPROVED CHARACTERIZATION AND MODELING OF TIGHT OIL FORMATIONS FOR CO₂ ENHANCED OIL RECOVERY POTENTIAL AND STORAGE CAPACITY ESTIMATION AND

BAKKEN CO2 STORAGE AND ENHANCED RECOVERY PROGRAM

Presented to North Dakota Industrial Commission Oil & Gas Research Council May 2, 2018

John Harju, James Sorensen, Beth Kurz, Steve Hawthorne, Larry Pekot, Steve Smith, Lu Jin, Jose Torres, Nick Azzolina, Nick Bosshart, Charlie Gorecki, and Ed Steadman

Critical Challenges. Practical Solutions.

© 2018 University of North Dakota Energy & Environmental Research Center

BAKKEN CO_2 STORAGE AND ENHANCED RECOVERY PROGRAM – PHASES I AND II (A.K.A. "BAKKEN CO_2 EOR") PARTNERS

IMPROVED CHARACTERIZATION AND MODELING OF TIGHT OIL FORMATIONS FOR CO₂ ENHANCED OIL RECOVERY POTENTIAL AND STORAGE CAPACITY ESTIMATION (A.K.A. "TIGHT OIL CHARACTERIZATION AND MODELING") PARTNERS

A TALE OF TWO PROJECTS

- Two separate but complementary research projects.
- Key similarities:
 - Substantial funding from DOE and NDIC OGRP.
 - Ultimate goal to support efforts to improve oil recovery from the Bakken.
 - Laboratory efforts to evaluate ability of CO₂ to mobilize Bakken oil.
 - Modeling efforts to improve our understanding of the mechanisms controlling CO₂ EOR in the Bakken and evaluate potential CO₂ EOR schemes.
- Key differences:
 - One emphasized detailed, advanced characterization of pore throat networks.
 - One emphasized a CO₂ injection test in a vertical Bakken well.

4

"Bakken CO₂ EOR – Phase I" (2011–2014)

Partner	Cash	In Kind	То
DOE	\$675,000	NA	Va
NDIC OGRP	\$475,000	NA	\$1
Marathon	\$50,000	\$163,000	
Continental Resources	<u>\$50,000</u>	<u>NA</u>	
TOTAL	\$1,250,000	\$163,000	

"Bakken CO₂ EOR – Phase II" (2014–2018)

Partner	Cash	In Kind	Total Phase II Value = \$5,272,116
DOE	\$2,623,558	NA	
Hess	\$250,000	NA	
XTO Energy	\$150,000	\$450,057	
CMG	NA	\$467,000	
Schlumberger	NA	\$337,094	
Baker Hughes	NA	<u>\$994,407</u>	
TOTAL	\$3,023,558	\$2,248,558	5

tal Phase I alue = ,413,000

"Tight Oil Characterization" (2014–2017)

Partner	Cash
DOE	\$2,500,000
NDIC OGRP	\$400,000
NDIC LEC	<u>\$250,000</u>
TOTAL	\$3,150,000

Total Tight Oil Value = \$3,150,000

EERC Bakken CO₂ EOR Efforts

Since 2011, NDIC OGRP contributions of \$875,000 have been leveraged to create a total program value of \$9,835,116.

6

Critical Challenges.

Practical Solutions.

LAB AND MODELING STUDIES

7

MMP BY CAPILLARY RISE-VANISHING INTERFACIAL TENSION Date: 1-21-2014 Sample ID: XXXXXXX Sample: Bakken 1-17-14, cap MMP, 1-20-14, p 154 T= 0:00:00:00 Log=true Capture Rate= 1fps

Patent pending 1.12, 0.84, 0.68 mm i.d.

EERC. UND NORTH DAKOTA.

8

Critical Challenges. Pra

Practical Solutions.

Laboratory Plug-Scale CO₂ Oil Recovery from Six Bakken Lithofacies from a McKenzie County Well (24 hours)

These types of data were generated for 46 core plug samples from six different wells.

 Two wells each in Dunn, Mountrail, and McKenzie Counties.

Green = organics Red = unconnected Φ Blue = connected Φ

Shales are dominated by intergranular distribution of organics, likely kerogen.

The amount of connected and unconnected pore space is roughly equal.

The organics absorb CO_2 and may also be a pathway for CO_2 diffusion, thereby facilitating oil mobilization from the shale.

EERC. | UND NORTH DAKOTA.

10

FESEM AND FIB-SEM OF MIDDLE BAKKEN MICROFRACTURES

MODELING AND SIMULATION ACTIVITIES

12

Core Scale to Evaluate Extraction Experiments

Reservoir Scale to Estimate CO₂ EOR and Storage in the Bakken

RESERVOIR SCALE HUFF 'N' PUFF MODELING RESULTS

- Best results were from a case with nine huff 'n' puff cycles over 10 years, total production over 30 years.
- Results show incremental oil recovery ranges from 0.6% to 5.4% improvement in recovery factor.
 - (i.e., recovery factor went from 17% to 23.4%).
- Modeling suggests conservative estimate of <u>net</u> CO₂ utilization is 1.8 mscf/bbl.

13

FIELD CO₂ INJECTION TEST

TEST CONCEPT AND HYPOTHESIS

Past pilot-scale CO₂ injection tests into horizontal, hydraulically fractured Bakken wells have shown little to no effect on oil mobilization.

• CO₂ likely moved so quickly through fractures that it did not have enough contact time, or became too dispersed, to interact with stranded oil in the matrix.

Hypotheses to Be Tested in a Vertical Well

- 1. CO₂ can be injected into an unstimulated Bakken reservoir.
- 2. The injected CO_2 can interact with the in-place fluids, resulting in subsequent mobilization of hydrocarbons and storage of CO₂.

15

Critical Challenges.

Practical Solutions.

INJECTION TEST STATISTICS

- Initial BHP ~7500 psi
- Stable injection rates between 6 and 12 gpm
- Maximum BHP ~9480 psi
- BHP during continuous injection ~9400 to ~9470 psi
- Temperature range 251° to 257°F

		Total	Cum	
Day	Date	Cum [gal]	Mass [tons]	Period
1	24-Jun	2236.7	10.4	Filling
1	24-Jun	50.8	0.2	BHP from 8200 to 8600
1	24-Jun	207	1.0	Cyclic inj- Part 1
2	25-Jun	1160.5	5.4	Cyclic inj- Part 1
2	25-Jun	904.5	4.2	Cyclic inj- Part 2
2	26-Jun	1009.4	4.7	Cyclic inj- Part 2
3	26-Jun	1752.6	8.1	Cont. Inj
4	27-Jun	11131	51.8	Cont. Inj
5	28-Jun	2806.2	13.0	Cont. Inj
		TOTAL	98.9 tons of CO ₂ injected	

16

PRE-AND POSTINJECTION OIL COMPOSITIONAL ANALYSIS CONDUCTED BY THE EERC

- Lab work showed CO₂ preferentially mobilizes lighter-end hydrocarbons from the matrix.
- Analysis of pre- and posttest oil samples shows there was an observable shift toward the lowermolecular-weight hydrocarbons as a result of the CO₂ injection.
- These data suggest that the CO₂ penetrated the matrix of the Middle Bakken, interacted with the oil therein, and mobilized a lighter oil.

$\textbf{ACCOMPLISHMENTS} - \textbf{CO}_2 \textbf{ FIELD TEST}$

- · Collaborated with XTO Energy to design and implement a CO_2 injection test.
- Injected nearly 100 tons of CO₂ into a vertical Middle Bakken well.
- Generated a wealth of real-world data:
 - Reservoir pressure and temperature
 - Fluid composition _
 - Injectivity _
 - Flowback
 - Evidence that CO₂ mobilized oil in matrix

18

ACCOMPLISHMENTS – LAB AND MODEL

- Lab work demonstrated the ability of CO₂ to permeate Bakken shales and nonshale rocks and mobilize oil.
- Refined a capillary rise-vanishing interfacial tension technique for studying phase behavior and estimating minimum miscibility pressure (MMP).
- Generated insight on the key characteristics and mechanisms controlling CO₂ permeation and oil mobility.
 - Concentration gradient-driven diffusion
 - Sorption
- Cyclic huff 'n' puff may yield 0.6% to 5.4% improvement in recovery factor.

19

THANK YOU!

Pores to Production

ENTION

John Harju Vice President for Strategic Partnerships Energy & Environmental Research Center jharju@undeerc.org 701.777.5157

20

ACKNOWLEDGMENT

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FE0024454.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

21

Critical Challenges. Pract

Practical Solutions.

CONTACT INFORMATION

Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5157 (phone) 701.777.5181 (fax)

John Harju **Vice President for Strategic Partnerships** jharju@undeerc.org

22

