Utilization of Associated Gas to Power Drilling Rigs – A Demonstration in the Bakken

Webinar
Hosted by
North Dakota Pipeline Authority
February 27, 2013

Chad Wocken
Senior Research Manager
Background

• This was a North Dakota Industrial Commission and U.S. Department of Energy-funded project, with commercial support and cost share from Continental Resources.

• With the continued flaring of nearly 30% of wellhead gas produced in North Dakota, alternatives for gas use are desired.

• Bifuel Rig Demonstration – assess fuel savings and operational impacts of using a mixture of diesel and wellhead gas to power a drilling rig in the Bakken.
A Use for Flared Natural Gas

- Drill rigs are typically powered by three large diesel generators.
- Diesel engines, properly outfitted with bifuel systems can utilize a mixture of diesel and natural gas.
- Significant fuel savings can be achieved because of the price differential between diesel and natural gas.
 - 30%–60% reduced fuel costs
 - Reduced fuel delivery and associated traffic, engine emissions, and fugitive dust
Wellhead Gas Use in Internal Combustion Engines Powering Drilling Rig Operation

Challenges:
Wellhead gas contains hydrocarbons such as propane, butane, pentane, and hexane. The introduction of these gaseous fuels to compression ignition engines can lead to:

– Engine knock at high replacement rates.
– Slight increases in exhaust temperatures.
– Changes in stack emissions.
– Changes in the combustion properties in the engine.

The purpose of this project was to evaluate these impacts with two tasks:

– Evaluate GTI Bi-Fuel® System at the EERC with Simulated Wellhead Gas
– Demonstrate GTI Bi-Fuel® System During Actual Drilling Operations
Evaluate GTI Bi-Fuel® System at the EERC with Simulated Wellhead Gas
Simulated Gas Test Objectives

- Evaluate knock characteristics of constituent gas components of a wellhead gas
- Monitor ignition delay
- Demonstrate performance of the GTI Bi-Fuel® system
- Determine the operational limits of the GTI system using typical Bakken wellhead gas
Caterpillar 3512 Diesel Generator
Supplied by Butler Machinery Co.

<table>
<thead>
<tr>
<th>Engine</th>
<th>Caterpillar 3512 (four-stroke cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinders</td>
<td>12</td>
</tr>
<tr>
<td>Bore, mm (in.)</td>
<td>170 (6.7)</td>
</tr>
<tr>
<td>Stroke, mm (in.)</td>
<td>190 (7.5)</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Turbo-charged-after-cooled</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>13:1*</td>
</tr>
<tr>
<td>Speed, rpm</td>
<td>1800</td>
</tr>
<tr>
<td>Engine Power, hp (kWe)</td>
<td>1592 (1100)</td>
</tr>
</tbody>
</table>

*Compression ratio of the test engine is lower than referenced in literature.
GTI STEPCON Bi-Fuel® System
Simulated Wellhead Gas Delivery System
Gas Composition

<table>
<thead>
<tr>
<th></th>
<th>Dry Pipeline Gas</th>
<th>Simulated Bakken Gas</th>
<th>Bi-Fuel System Recommended Gas Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane, CH₄</td>
<td>92.2%</td>
<td>55%</td>
<td>>92%</td>
</tr>
<tr>
<td>Ethane, C₂H₆</td>
<td>5.5%</td>
<td>22%</td>
<td><8%</td>
</tr>
<tr>
<td>Propane, C₃H₈</td>
<td>0.3%</td>
<td>13%</td>
<td><8%</td>
</tr>
<tr>
<td>Butane, C₄H₁₀</td>
<td></td>
<td>5%</td>
<td><2% combined total butane – heptane</td>
</tr>
<tr>
<td>Pentane, C₅H₁₂</td>
<td></td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Hexane, C₆H₁₄</td>
<td></td>
<td>0.25%</td>
<td></td>
</tr>
<tr>
<td>Heptane, C₇H₁₆</td>
<td></td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td>Nitrogen, N₂</td>
<td>1.6%</td>
<td>3%</td>
<td></td>
</tr>
<tr>
<td>Carbon Dioxide, CO₂</td>
<td>0.4%</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Higher Heating Value, Btu/scf</td>
<td>1041</td>
<td>1495</td>
<td></td>
</tr>
</tbody>
</table>
Parametric Test Matrix

<table>
<thead>
<tr>
<th>Test #</th>
<th>Load, %</th>
<th>Diesel Replacement, %</th>
<th>Methane, mol %</th>
<th>Ethane, mol %</th>
<th>Propane, mol %</th>
<th>Butane, mol %</th>
<th>Pentane, mol %</th>
<th>Hexane, mol %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>70</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>Up to 70</td>
<td>56.1</td>
<td>23.1</td>
<td>13.9</td>
<td>4.9</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>40</td>
<td>Up to 70</td>
<td>56.1</td>
<td>23.1</td>
<td>13.9</td>
<td>4.9</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
<td>Up to 70</td>
<td>56.1</td>
<td>23.1</td>
<td>13.9</td>
<td>4.9</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>Up to 30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>40</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>Up to 30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>60</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>Up to 30</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>Up to 20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>40</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>Up to 20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>60</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>Up to 20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>20</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Up to 4%</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>40</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Up to 4%</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>60</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Up to 4%</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Up to 4%</td>
</tr>
<tr>
<td>21</td>
<td>40</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Up to 4%</td>
</tr>
<tr>
<td>22</td>
<td>60</td>
<td>70</td>
<td>Balance</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Up to 4%</td>
</tr>
</tbody>
</table>
Knock at 20% Engine Load

- Safety Limit
- Control Limit

Knock, ips

Time

50% Simulated Bakken Replacement
60% Simulated Bakken Replacement
Knock at 40% Engine Load

Time:
- 13:30
- 13:40
- 13:50
- 14:00
- 14:10

Knock, ips:
- Safety Limit
- Control Limit

50% Simulated Bakken Replacement
60% Simulated Bakken Replacement
70% Simulated Bakken Replacement
Conclusions

• Diesel engines can run on wellhead gas, but the replacement rate is limited because of the potential for engine knock.

• Injection of individual gas components at typical concentrations did not cause knock.

• There was a slight increase in ignition delay and peak cylinder pressure when firing wellhead gas, which is consistent with the knock observed.
Demonstrate GTI Bi-Fuel ® System During Actual Drilling Operations
Field Demonstration Objectives

- Evaluate diesel engine performance using wellhead gas during actual drilling operations
 - Monitor engine knock
 - Measure emissions
 - Calculate fuel savings
Caterpillar 3512C Diesel Generator

<table>
<thead>
<tr>
<th>Engine</th>
<th>Caterpillar 3512 (four-stroke cycle)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinders</td>
<td>12</td>
</tr>
<tr>
<td>Aspiration</td>
<td>Turbo-charged-after-cooled</td>
</tr>
<tr>
<td>Compression Ratio</td>
<td>14.7:1</td>
</tr>
<tr>
<td>Speed, rpm</td>
<td>1200</td>
</tr>
<tr>
<td>Engine Power, hp</td>
<td>1476</td>
</tr>
</tbody>
</table>
Typical Engine Load During Steady-State Drilling Operations
Diesel Consumption Rate During Steady-State Drilling Operations

- GTI system stopped gas supply and diesel fuel rate increased to meet engine demand.
- Gas supply restored to Engine No. 2, decreasing diesel fuel consumption.
Engine Load While Tripping

- Engine No. 1
- Engine No. 2
- Engine No. 3

Engine Load, %

Time

6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 2:00 4:00 6:00
Engine Knock During Tripping

![Graph showing engine knock during tripping](image)

- Engine No. 1
- Engine No. 2
- Engine No. 3
- Control Level
- Safety Level
Diesel Fuel Savings

Cumulative Diesel Saved, gal

- Engine No. 1
- Engine No. 2
- Engine No. 3
- Total

Date

Load Profile

- % of Time
- % of Diesel Used
- % of Diesel Saved

Percentage

Engine Load Factor, %

- 0-12
- 12-20
- 20-30
- 30-40
- 40-60
- 60-70
- >70

The International Center for Applied Energy Technology®
Comparison of Emissions

The graph compares emissions for different fuel types:

- **Bi-Fuel**
- **Diesel Only**
- **Diesel Only + Flare**

The emissions are measured in g/hr for CO, NOx, and THC.
Summary of Results

- Diesel fuel consumption reduced by 18,000 gallons for two wells. A period of 47 days.

- Fuel-related net cost savings of nearly $60,000.

- Reduced delivery truck traffic.

- Beneficial use of wellhead gas.

- Reduced emissions compared to diesel-only drilling and flaring of gas.

- Seamless engine operation using the GTI Bi-Fuel® system.
Effect of Broad Applications

- Nearly 200 drilling rigs in operation at any given time
- 1,800,000 Mcf of wellhead gas used per year
- 18,000,000 gallons of diesel fuel saved per year
- $72,000,000 diesel fuel cost saved per year
- 3600 fuel deliveries avoided per year
- 68% reduction in overall emissions compared to diesel-only operation plus flaring gas
Acknowledgments

North Dakota Pipeline Authority
North Dakota Industrial Commission Oil & Gas Research Council
U.S. Department of Energy National Energy Technology Laboratory
Continental Resources
Cyclone Drilling
ECO-Alternative Fuel Systems
Altronic
Butler Machinery Co.
Energy & Environmental Research Center
University of North Dakota
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018

World Wide Web: www.undeerc.org
Telephone No. (701) 777-5273
Fax No. (701) 777-5181

Chad Wocken, Senior Research Manager
cwocken@undeerc.org
Acknowledgment

This material is based upon work supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. DE-FC26-08NT43291.

Disclaimer

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.