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EERC DISCLAIMER 
 
 LEGAL NOTICE This research report was prepared by the Energy & Environmental 
Research Center (EERC), an agency of the University of North Dakota, as an account of work 
sponsored by the Bakken Production Optimization Program. Because of the research nature of the 
work performed, neither the EERC nor any of its employees makes any warranty, express or 
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement or recommendation by the EERC. 
 
 
NDIC DISCLAIMER 
 
 This report was prepared by the Energy & Environmental Research Center (EERC) pursuant 
to an agreement partially funded by the Industrial Commission of North Dakota, and neither the 
EERC nor any of its subcontractors nor the North Dakota Industrial Commission nor any person 
acting on behalf of either: 
 

(A) Makes any warranty or representation, express or implied, with respect to the accuracy, 
completeness, or usefulness of the information contained in this report or that the use 
of any information, apparatus, method, or process disclosed in this report may not 
infringe privately owned rights; or 

 
(B) Assumes any liabilities with respect to the use of, or for damages resulting from the 

use of, any information, apparatus, method, or process disclosed in this report. 
 
 Reference herein to any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the North Dakota Industrial Commission. The views and opinions 
of authors expressed herein do not necessarily state or reflect those of the North Dakota Industrial 
Commission. 
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USING CLUSTER ANALYSIS TO ENHANCE COMPLETION OPTIMIZATION 
STUDIES OF THE BAKKEN PETROLEUM SYSTEM 

 
 
EXECUTIVE SUMMARY 
 
 Since 2016, through the Bakken Production Optimization Program (BPOP), the Energy & 
Environmental Research Center (EERC) has been evaluating Bakken petroleum system (BPS) oil 
production and well completion optimization possibilities using statistical and machine learning 
(ML) methods (Pekot and others, 20161; Dalkhaa and others, 20192; Chakhmakhchev and others, 
20203). An expanded analysis was conducted in 2020 focused on applying ML methods to a data 
set of over 12,000 BPS wells to predict well performance using completion design parameters. 
The results of this effort showed that the model could accurately explain the variations in 
production from completion parameters when applied to the same subarea of the Bakken from 
which the training data originated; however, it lost strength when applied to wells located in other 
areas of the basin. The loss of performance when applied to other regions of the basin suggested 
that variables not included in the model, specifically geologic factors, were important and that 
further work incorporating these factors would reduce prediction errors. Subsequent work under 
BPOP 3.0 was therefore aimed at quantifying geologic variation across the BPS using available 
data. 

 
 Researchers from industry and academia generally agree that both geology and completion 
design parameters control well production performance in unconventional oil and gas plays like 
the BPS. Geologic properties of reservoirs on a basin or play scale are often not directly measured 
and consequently omitted from many analyses of production performance. Ignoring a major source 
of variation may result in weak or even inaccurate prediction models, which are used in completion 
optimization evaluations. The purpose of this work was to develop a tool to provide a quantitative 
means for integrating geologic factors into completion optimization analysis of the BPS.  

 
 Two data collection efforts were conducted to create a database using publicly available, 
internal, and commercial data sets. First, a completion and production master database containing 
about 14,700 wells located in the BPS was updated, cleaned, and organized for further analysis. 
Second, geologic and geochemical information was compiled for the purpose of implementing 

 
1 Pekot, L.J., Dalkhaa, C., Musich, M.A., and Martin, C.L., 2016, Bakken production analysis: EERC report, 35 p. 
2  Dalkhaa, C., Azzolina, N.A., Pekot, L.J., Kurz, B.A., Kalk, B.P., and Harju, J.A., 2019, Bakken production 
evaluation using multivariate statistical analysis: Final report for North Dakota Industrial Commission, North Dakota 
Oil and Gas Research Program, and Members of the Bakken Production Optimization Program Consortium, EERC 
Publication 2019-EERC-04-16, Grand Forks, North Dakota, Energy & Environmental Research Center, April. 
3 Chakhmakhchev, A.V., Azzolina, N.A., Kurz, B.A., Yu, X., Dalkhaa, C., Glazewski, K.A., Sorensen, J.A., Gorecki 
C.D., Harju, J.A., and Steadman, E.N., 2020, Advanced analysis of Bakken data to optimize future production 
strategies: Report for North Dakota Industrial Commission, North Dakota Oil and Gas Research Program, and 
Members of the Bakken Production Optimization Program (BPOP) Contract No. G-040-080, EERC Publication 2020-
EERC-06-14, Grand Forks, North Dakota, Energy & Environmental Research Center, June. 
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cluster analysis for the wells in the master database. The geologic data include depth and formation 
thicknesses, such as true vertical depths of the Bakken and Three Forks Formations (feet) and 
thicknesses of the total Bakken Formation, Upper/Middle/Lower Bakken Members, and Three 
Forks Formation (feet). Additional geologic data include formation temperature (°F) and pressure 
gradient (psi/ft) for the Bakken Formation and reservoir porosity (%) and permeability (mD). 
Other geochemical information integrated into this analysis included source rock characteristics 
such as HI (hydrogen index), pyrolysis temperature (Tmax, °C), total organic carbon (TOC, %) 
content for both the Upper Bakken and Lower Bakken, bulk oil and gas properties, and brine 
chemistry data. 
 
 Using the aforementioned data sets, a web-based BPS cluster analysis calculator was built 
to allow the user to interactively group portions of the BPS into clusters based on sets of geologic 
and geochemical input variables. The calculator allows the user to select which geologic and/or 
geochemical variables to include, cluster calculation method, and number of clusters. The 
calculator provides a convenient tool to interpret results including an interactive map showing the 
cluster outlines, variable importance charts, cluster number determination plots, data location map, 
and variable distribution plots. The cluster calculator was used in multiple iterations with various 
combinations of numbers of clusters, statistical engines, and types of variables to evaluate the 
performance of the tool. The BPS cluster analysis calculator will be incorporated into future BPOP 
completion optimization calculations by including geologic clusters in the list of production 
performance predictors or through the stratification of analyses by geologic cluster. 
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USING CLUSTER ANALYSIS TO ENHANCE COMPLETION OPTIMIZATION 
STUDIES OF THE BAKKEN PETROLEUM SYSTEM 

 
 
1.0 INTRODUCTION 
 
 Researchers from industry and academia generally agree that both geology and completion 
design parameters control well production performance in unconventional oil and gas plays like 
the Bakken petroleum system (BPS). While completion design parameters are measured quantities 
and therefore represent “hard data.” the geologic properties of the reservoir characteristics on a 
basin or play scale are often not directly measured and consequently omitted from many analyses 
of production performance. However, ignoring geologic factors and heterogeneity fails to 
adequately capture the effect that geology may have on production. Ignoring a major source of 
variation may result in weak or even faulty prediction models, which are used in completion 
optimization evaluations. 
 
 Frequently, the question asked is, What is the best completion design strategy in each 
geologic setting? However, the lack of detailed data covering the whole area of investigation forces 
researchers to substitute measurements of geologic/reservoir properties with proxies such as  
1) depth for thermal maturity, overpressure, and fracture intensity; 2) water cut for reservoir quality; 
3) API (American Petroleum Institute) gravity for oil viscosity; and 4) surface well geographic 
location (X- and Y-coordinates) for geologic similarities. Over the past two decades, there have 
been several approaches for incorporating geologic proxies into data analyses seeking to evaluate 
well production performance across broad regional areas. 
 
 Earlier optimization studies in unconventional reservoirs using data-mining techniques 
included geographic coordinates of the wells and absolute reservoir depths as proxies for reservoir 
qualities such as pressure, thickness, and maturity level of organic-rich shale (LaFollette and others, 
2012). In these earlier modeling studies, geographic coordinates, true vertical depth, and 
completion parameters were integrated to predict gas production in wells.  
 
 In more recent studies, similar approaches of using well geographic coordinates along with 
completion parameters and limited reservoir characteristics data were used in prediction models 
by Garjan and Ghaneezabad (2020), Zhao and others (2020), Nabors and others (2020), and Porras 
and others (2020). These studies demonstrated that geographic coordinates or other geologic 
proxies ranked as one of the top variables of importance and could explain a significant portion of 
the variance in production (Table 1). 
 
 Completion design optimization studies in the BPS have utilized a wide range of parameters 
to predict well production performance (Male and others, 2018). This broad set of parameters has 
included completion design details as well as geologic and reservoir characteristics of the area of 
interest. Male and others (2018) predicted estimated ultimate recovery (EUR) using nine 
parameters including water cut, production start date, API oil gravity, true vertical depth, depth of 
the Three Forks Formation top, initial reservoir pressure, and other completion design 
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Table 1. Utilization of Geologic Parameters and Their Proxies in Predictive Modeling 

Study and 
Oil/Gas Play 

Geologic, Rock Properties, 
and Proxy Variables Used in 

the Study Results 
Male and others (2018) 
BPS 

Water cut, total vertical depth, depth 
of the Three Fork Formation top, 
initial reservoir pressure, and oil 

API gravity 

Used geologic and completion design 
parameters in a gradient-boosting statistical 
model to predict EUR and create single-
variable dependency plots. Found that water 
cut was the most important parameter, 
followed by completion date and injection 
volumes. Single-variable dependency plots 
indicated optimal volumes of injected fluid 
and proppant. 

Luo and others (2019) 
BPS 

True vertical depth, measured depth, 
formation thickness, formation 

depth, porosity, and water 
saturation, selected from 16 

predictors 

Used an interpolation method to extend data 
from 300 wells to a larger population of 
3000 wells. Applied random forest to 
predict first-year production normalized by 
stage. Showed different impacts of proppant 
amount on production, depending on 
formation thickness and porosity. 

Garjan and Ghaneezabad 
(2020) 
Motney Formation 

Well latitude and longitude and true 
vertical depth 

A random forest model was applied to 
predict production performance in 184 wells 
using 13 predictors. The analysis revealed 
that well production performance did not 
improve despite continuous enhancement of 
hydraulic fracture parameters.  

Zhao and others (2020) 
Eagle Ford 

Well latitude and longitude, oil 
type, total organic carbon (TOC), 
vitrinite reflectance equivalent, 

hydrocarbon pore volume, 
compressive strength, Young’s 

modulus, pore pressure gradient, 
Upper Eagle Ford thickness, Lower 
Eagle Ford thickness, well depth, 

and oil API gravity 

Random forest was used to predict EUR in 
the Eagle Ford play. The most import 
features were well depth, hydrocarbon pore 
volume, API gravity, and formation 
thickness. With a reduced number of 
predictors and by limiting the investigation 
to a smaller area, the authors managed to 
reduce the mean square error of prediction 
by 26%–52%. 

Nabors and others (2020) 
Eagle Ford 

Well latitude and longitude, true 
vertical depth, API gravity, and 

elevation 

Geologic and completion parameters were 
used to predict 12-month production and 
create variable importance and dependency 
graphs to optimize well operation. 

Porras and others (2020) 
Viking Formation, Canada 

Well latitude and longitude, 
reservoir true vertical depth, net 

pay, and average gas:oil ratio 
(GOR) 

Random forest was applied to predict 12-
month production and create variable 
importance and partial dependency plots for 
completion optimization. Concluded that 
completion length, well geographic 
location, and net pay were the most 
important features that contributed to oil 
production. 

 
 
characteristics such as volumes of fluid and proppant injected and perforated length. Luo and 
others (2018) combined normalized completion parameters with measured depth, well true vertical 
depths, total formation thickness, porosity, and water saturation to predict first-year annual 
production. In this context, normalized completion parameters included volume of proppant per 
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stage, volume of fluid per stage, normalized stage length, and first-year production per stage. Luo 
and others (2018) retrieved the geologic and reservoir characteristics from a limited number of 
vertical wells (300 wells) and then interpolated the results for the 3000 horizontal wells within 
their focus area. They demonstrated the impacts of completion practices on well performance for 
different values of porosity and thicknesses of reservoir rock. They concluded that well 
performance improved from an increased volume of proppant in thicker, low-porosity reservoirs 
and showed that thickness of the Middle Bakken and structural depth most significantly influenced 
the first year of production (Table 1). 
 
 Like many other petroleum resource plays, the BPS demonstrates basin-scale geologic 
variability. Numerous investigations of the BPS have documented differences in the source rocks, 
reservoir rock, reservoir pressure (P) and temperature (T), formation thickness, formation depth, 
fluid characteristics, and well production performance across the basin. Companies operating in 
the BPS (“operators”) have learned by experience that these variations in geologic properties affect 
the optimal completion design, and therefore operators tune their well completion strategies 
depending on their location within the basin.  
 
 Since 2016, through the Bakken Production Optimization Program (BPOP), the Energy & 
Environmental Research Center (EERC) has been evaluating BPS oil production and well 
completion data using statistical and machine learning (ML) methods (Pekot and others, 2016; 
Dalkhaa and others, 2019; Chakhmakhchev and others, 2020). An expanded analysis conducted in 
2020 using over 12,000 BPS wells and ML methods to predict well performance using completion 
design parameters demonstrated an overfitting problem on a basin scale (Chakhmakhchev and 
others, 2020). Stated differently, while the ML-based models performed well on the training data 
set and could accurately explain the variation in production from completion parameters, the 
models did not perform equally well on the test data set for a different set of wells that were not 
included in the model training and tuning. The overfitting suggested that variables not included in 
the model (e.g., geologic factors) were important and that further work incorporating geologic 
factors would reduce prediction errors. Subsequent work under BPOP 3.0 was therefore aimed at 
quantifying geologic variation across the BPS using available data. 
 
 To account for geologic heterogeneity across the BPS, the current work investigated 
categorizing the BPS into several subareas or clusters characterized by similar geology and 
geochemistry. In-house and publicly available data sets describing the geology and geochemistry 
of the BPS were compiled and interpolated. Cluster analysis was used to create subareas within 
the BPS characterized by similar geologic and reservoir characteristics. The remainder of this 
report describes the input data used in the clustering analysis, the data-processing steps used to 
input data into the clustering algorithms, the different clustering algorithms considered, and the 
results of the clustering analysis applied to the BPS. The outcomes from the clustering analysis 
will provide inputs to subsequent analyses conducted under BPOP to enhance completion 
optimization studies that account for both geologic and completion design parameters.  
 
 
 
 



 

4 

2.0 METHODS 
 
 Three processes were used to cluster the BPS into groups of wells with similar geologic and 
reservoir fluid properties: 1) data acquisition, which acquired geologic and fluid properties data 
from different sources; 2) data processing, where the geologic and fluid properties data were 
interpolated and extracted to form a tabular data set; and 3) cluster analysis, where the interpolated 
geology data from Step 2 were classified into groups based on clustering algorithms (Figure 1).  
 
 

 
Figure 1. Flow chart showing the three processes used to cluster the BPS into groups of wells 
with similar geologic and reservoir fluid properties.  

 
 
3.0 DATA ACQUISITION 
 
 The EERC project team compiled available geologic and reservoir fluid data for wells 
completed in either the Bakken or Three Forks Formation of the BPS. These data were compiled 
into a master data set (see Appendix A) and used as input data to the cluster analysis. The master 
data set was compiled from both the North Dakota Industrial Commission (NDIC) and through a 
DrillingInfo (now Enverus, Inc.) subscription (DrillingInfo, 2019). The master data set contains 
14,691 wells. To achieve a reasonable speed of calculation and efficient visualization in the online 
dashboard, a fraction of the total number of wells (1832 wells, or 12%) was randomly selected 
from the master data set across the entire BPS. These 1832 wells were used as the base locations 
for the cluster analysis. The spatial distribution of the final set of 1832 wells which were used to 
create the classification is shown in Figure 2. 
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Figure 2. Spatial distribution of 1832 sampled wells completed in either the Bakken or Three 
Forks Formation of the BPS that were used in the online BPS cluster analysis calculator 
(https://eerc-ai-team.shinyapps.io/Bakken-Geology/). 
 
 
 Four types of subsurface data were acquired: 1) geologic and reservoir properties, 2) source 
rock geochemistry, 3) brine chemistry, and 4) oil and gas bulk property data. Each of these types 
of subsurface data are described in detail below in their respective sections. 
 

3.1 Geologic and Reservoir Properties Data 
 
 Table 2 lists the type of geologic and reservoir data, measurement units, and their sources. 
The geologic data include depth and formation thicknesses, such as true vertical depths of the 
Bakken and Three Forks Formations (feet) and thicknesses of the total Bakken Formation, 
Upper/Middle/Lower Bakken Members, and the Three Forks Formation (feet). Additional 
geologic data include formation temperature (°F) and pressure gradient (psi/ft) for the Bakken 
Formation and reservoir porosity (%) and permeability (mD).  
 
 
 
 

https://eerc-ai-team.shinyapps.io/Bakken-Geology/
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Table 2. Geologic and Reservoir Properties Data Used in the BPS Cluster Analysis 
No. Variable Unit Source 

1 Middle Bakken 
temperature 

oF Sonnenberg and others (2017)  

2 Lower Bakken 
thickness ft NDIC Department of Mineral Resources database query; 

LeFever (2008a) 

3 Middle Bakken 
thickness ft Sonnenberg and others (2017)  

4 Upper Bakken 
thickness ft NDIC DMR (database query) 

5 Bakken thickness ft Calculated from the thicknesses of the three Bakken 
members 

6 Three Forks 
thickness ft Sonnenberg and others (2017)  

7 Bakken depth ft EERC basin model; Burton-Kelly and others (2018)  

8 Three Forks 
depth ft EERC basin model. Burton-Kelly and others (2018)  

9 Middle Bakken 
pressure gradient psi/ft Sonnenberg and others (2017)  

10 Permeability mD North Dakota Geologic Survey (NDGS) database 
11 Porosity % NDGS database 

 
 
 With the exception of porosity and permeability, the geologic data were interpolated using 
published contour maps (see Table 1 for references). While digital contour maps were interpolated 
directly to raster format, contour maps published as images were first georeferenced, digitized, 
and then interpolated to raster format. After raster versions were created for all data sets, the value 
of the raster layer was extracted for each wellhead location from the master data set, thereby using 
interpolated properties data (raster) to assign point properties data to each well.  
 
 The porosity and permeability data were collected from the NDGS database as point data 
from 123 wells. The sampling size was limited to 85 Middle Bakken wells, 43 Three Forks wells, 
and five wells had data from both formations. Vertical variations in porosity and permeability were 
not accounted for because there was only one data point available for each well and 2) the data for 
the Middle Bakken and Three Forks Formations were not distinguished, while instead data from 
both formations were lumped together to achieve larger spatial coverage. The porosity and 
permeability values were interpolated using the inverse distance weight (IDW) method to create a 
regional map of BPS porosity and permeability. The permeability data were skewed by larger 
values, thus they were log-transformed before IDW interpolation. It should be noted that because 
of the relatively small number of source data for porosity and permeability, the final interpolated 
maps of these two variables covered a smaller area than the interpolated maps for other variables.  
 

3.2 Source Rock Geochemistry Data 
 
 Table 3 lists the source rock geochemical variables including variable name, unit, and data 
source. The geochemical variables include HI (hydrogen index), pyrolysis temperature (Tmax, °C), 
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Table 3. Source Rock Geochemistry Data Used in the BPS Cluster Analysis 
No. Variable Unit Source 
1 Upper Bakken HI % EERC and NDGS database 
2 Lower Bakken HI % EERC and NDGS database 

3 Upper Bakken 
Tmax 

oC LeFever (2008b)  

4 Lower Bakken 
Tmax 

oC LeFever (2008b) 

5 Upper Bakken 
TOC % LeFever (2008b) 

6 Lower Bakken 
TOC % LeFever (2008b) 

 
 
and TOC (%) for both the Upper Bakken and Lower Bakken. The sources of these parameters are 
point data from well measurements documented in the literature. The number of wells with 
measurements of HI, Tmax, and TOC are 458, 413, and 458 wells for the Upper Bakken and 377, 
332, and 377 wells for the Lower Bakken, respectively. The EERC performed interpolation using 
these point data to create raster files, after which the values were extracted to the master wells 
based on the interpolated source rock geochemical raster layers.  
 

3.3 Brine Chemistry Data 
 
 The brine chemistry data include the concentrations of calcium (Ca), iron (Fe), magnesium 
(Mg), sulfate (SO4), and sodium chloride (NaCl) in the reservoir fluids of the Bakken and Three 
Forks Formations (Table 4). These data were acquired from NDIC DMR. The water chemistry 
data from both the Bakken Formation and Three Forks Formation were grouped together for 
individual wells during the interpolation process. The total number of wells from both formations 
with measurements of each analyte were Ca (424), Fe (411), Mg (424), SO4 (421), and NaCl (385).  
 
 

Table 4. Brine Chemistry Data Used in the BPS  
Cluster Analysis* 
No. Variable Unit 
1 Bakken Ca mol/L 
2 Bakken Fe mol/L 
3 Bakken Mg mol/L 
4 Bakken SO4 mol/L 
5 Bakken NaCl mol/L 
6 Three Forks Ca mol/L 
7 Three Forks Fe mol/L 
8 Three Forks Mg mol/L 
9 Three Forks SO4 mol/L 
10 Bakken Ca mol/L 
* Data provided by NDIC DMR. 
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3.4 Oil and Gas Properties Data 
 
 Variables characterizing bulk oil composition include concentrations of sulfur and paraffin, 
API gravity, and viscosity. The gas composition variables include concentrations of methane (C1), 
ethane (C2), and the ratios of C1/C2, C1/C3, and gas wetness. Gas wetness is defined by Equation 
1:  
 
 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑤𝑤𝑔𝑔𝑤𝑤𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔 =  C2+C3+C4+C5

C1+C2+C3+C4+C5
𝑥𝑥100%  [Eq. 1] 

 
Where C3 is propane, C4 is butane, and C5 is pentane. The list of variables characterizing reservoir 
oil and gas data, measurement units, and sources are presented in Table 5. All the oil and gas 
properties data were interpolated from digitized raster maps derived from published contour maps.  
 
 
Table 5. Oil and Gas Properties Data Used in the BPS Cluster Analysis 
No. Variable Unit Source 
1 Bakken sulfur mol/L NDIC DMR 
2 Bakken paraffin % NDIC DMR 

3 Bakken oil 
gravity API NDIC DMR 

4 Bakken oil 
viscosity cSt NDIC DMR 

5 Bakken C1 % NDIC DMR 
6 Bakken C2 % NDIC DMR 
7 Bakken C3 % NDIC DMR 
8 Bakken C1/C2 - NDIC DMR 
9 Bakken C1/C3 - NDIC DMR 
10 Bakken wetness % NDIC DMR 

11 Three Forks 
sulfur mol/L NDIC DMR 

12 Three Forks 
paraffin % NDIC DMR 

13 Three Forks oil 
gravity API Calculated from the EERC basin model (Burton-Kelly and 

others, 2018). 

14 Three Forks oil 
viscosity cSt NDIC DMR 

15 Three Forks C1 % NDIC DMR 
16 Three Forks C2 % NDIC DMR 
17 Three Forks C3 % NDIC DMR 

18 Three Forks 
C1/C2 - NDIC DMR 

19 Three Forks 
C1/C3 - NDIC DMR 

20 Three Forks 
wetness % NDIC DMR 

21 Bakken sulfur mol/L NDIC DMR 
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3.5  Interpolations of Properties Data for Point Measurements 
 
 Many of the measurements were collected from individual wells and therefore represent 
point data with a unique x- and y-location in the BPS. The geographic locations of these points 
(well locations) can be found in the online BPS cluster analysis calculator (https://eerc-ai-
team.shinyapps.io/Bakken-Geology/). EERC-interpolated maps were created for porosity and 
permeability (n = 123 wells), source rock geochemistry data, and brine chemistry data. As noted 
above, the other property data used existing contour maps that were published in the literature, 
which included geologic and reservoir properties (formation temperature, depth, thickness, and 
pressure gradient), and oil and gas properties data. The values of the parameters were extracted 
from these interpolated raster maps for each properties data type (geologic and reservoir properties, 
source rock geochemistry, brine chemistry, and oil and gas properties) and then compiled as the 
data set used in the data processing for cluster analysis. 
 
 
4.0 DATA PROCESSING 
 
 After appending the interpolated data for the four types of property data to the master data 
set, a final tabular data set was created for input to the cluster analysis. This tabular data set 
contains 14,691 wells and 48 subsurface parameters from which 1832 wells (or 12%) were used 
in the online BPS cluster analysis calculator. The data set was preprocessed before performing 
cluster analysis to overcome the problems of 1) missing values, 2) outliers, and 3) scaling issue.  
 

4.1 Missing Values 
 
 The point source wells for some variables such as porosity and permeability cover less 
spatial area than other variables. As a result, there are missing values in the final data set for these 
variables after the processes of interpolation and extraction. In this report, no procedure was 
conducted to address the issue of missing values due to limited data coverage. 
 

4.2 Outliers 
 
 Very few issues of outliers among the variables were detected in the data set. All geologic 
parameters were standardized before cluster analysis, and the standardization process reduced the 
impact from potential outliers (very high or low values).  
 

4.3 Scaling Issue 
 
 The scaling issue refers to the situation when variables used in the calculation have different 
scales. If the raw data were used in the cluster analysis, then some variables would have larger 
effects than others solely because of their measurement scale and not because of their importance 
in explaining variation. For example, Bakken thickness has a range of tens of feet, while 
permeability ranges several orders of magnitude. To avoid the scale issue, all the variables were 
standardized by subtracting the mean and dividing by two standard deviations (Equation 2). 
Dividing by two standard deviations means that a one-unit change in the scaled predictor 
corresponds to a change from one standard deviation below the mean to one standard deviation 

https://eerc-ai-team.shinyapps.io/Bakken-Geology/
https://eerc-ai-team.shinyapps.io/Bakken-Geology/
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above the mean (Gelman and Hill, 2007). For example, the standardized input for porosity was 
calculated as: 
 

z.porosity = (porosity – mean[porosity])/(2*sd[porosity) [Eq. 2] 
 

Where: 
z.porosity = The standardized value of porosity. 
mean(porosity) = The average of porosity. 
sd(porosity) = The standard deviation of porosity. 

 
 
5.0 CLUSTER ANALYSIS 
 
 Three types of clustering algorithms were evaluated: k-means, hierarchical, and model-based. 
The k-means clustering algorithm was selected to run calculations in this study because it is 
relatively more straightforward to understand, faster in calculation, and more easily adapts to new 
examples with clusters of different shapes and sizes. However, all three methods are available in 
the BPS cluster analysis calculator (see Section 6).  
 

5.1 Clustering Algorithm 
 

5.1.1 K-Means Clustering Algorithm 
 
 The k-means algorithm is a relatively simple calculation that enables rapid assignment of 
individual points (e.g., wells) into clusters (groups). The k-means clustering method is an 
unsupervised ML algorithm that does not require prior information to conduct the calculation. 
However, the number of clusters (k number) must be specified by the user prior to calculation (i.e., 
the k number is a hyperparameter for the method). The selection of the k number can be determined 
by several different approaches such as the elbow method, which looks to minimize the within-
cluster variation (within-group sum of squares, or WSS), or the silhouette approach, which 
measures how similar an object is to its own cluster (cohesion) compared to other clusters 
(separation) (Boehmke and Greenwell, 2020). However, domain knowledge must also be utilized 
during k number selection, as the number of clusters and their geospatial distribution should align 
with domain knowledge. 
 
 Additional detail about the k-means clustering algorithm can be found in the literature 
(Boehmke and Greenwell, 2020; Hartigan and Wong, 1979) and is only briefly described here. As 
noted above, the user must specify k number of clusters. The k-means algorithm will then 
randomly choose k points as the starting centroids, calculate the distance of all the other points to 
these centroids, then group the other points to these centroids to form k clusters according to the 
distance values. The centroids serve as the center or mean of the cluster. In this context, distance 
is the similarity score in a matrix of variables, for example, the geologic and reservoir properties, 
source rock geochemistry, brine chemistry, and oil and gas properties data previously described. 
The grouping algorithm decides whether a point belongs to one cluster or another cluster based on 
the similarity score. The similarity score is the smallest within the cluster but is the largest between 
the clusters. In a series of runs, k-means will continue to randomly select k points as centroids and 
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perform the clustering again. The total distances of these runs of clustering are compared and the 
one with the smaller distance will be selected. This process of setting centroids and assigning data 
to the clusters repeats until the sum of the distances to the cluster centroids is minimized.  
 

5.1.2 Hierarchical Clustering Algorithm 
 
 Hierarchical clustering is an algorithm that groups similar objects into groups (i.e., clusters) 
that have a predetermined order (i.e., hierarchy). There are two types of hierarchical clustering: 
agglomerative and divisive (Jain, 2010). In the agglomerative algorithm, each observation starts 
in its own cluster and merges into groups as it moves up the hierarchy until stop conditions (or a 
threshold in similarity) are reached. On the other hand, the divisive hierarchical algorithm starts 
with all observations in one cluster and divides observations into groups through successive 
iterations. A dendrogram, which is a treelike diagram that records the sequences of merges or splits 
of the data points, is used to select the number of clusters.  
 

5.1.3 Model-Based Clustering Algorithm 
 
 The model-based clustering method assumes that the data are coming from a distribution 
representing a mixture of two or more components (i.e., clusters). Each component or cluster is 
modeled by Gaussian distribution, whereas each point is assigned a probability of belonging to 
each cluster. The most common approach to define the data distribution is the expectation 
maximum (EM) algorithm (Rodriguez and others, 2019). The EM algorithm attempts to model 
every point in each cluster by multivariate normal distributions, therefore, the distribution 
observed for the whole data set is a mixture of various normal distributions. The k-means algorithm 
is a special case of model-based clustering because the k-means considers the same variability for 
all mixed normal distributions. The key advantage of model-based clustering over standard 
clustering algorithms (k-means, hierarchical clustering, etc.) is that the method suggests the 
number of clusters in resulting calculations, while the standard algorithms require 
predetermination of cluster numbers. The main disadvantages of model-based clustering are 1) 
higher computational demand and 2) occasional inability to meet convergence criteria.  
 

5.2 Variable Importance Charts 
 
 Variable importance charts were constructed to visualize the contribution of different 
variables in generating the clustering assignment. Two types of variable importance chart were 
explored: 1) one variable importance chart for all clusters and 2) variable importance charts for 
individual clusters, i.e., one chart per cluster.  
 

5.2.1 Variable Importance Chart for All Clusters 
 
 The variable importance chart for all clusters illustrates how each variable contributes to the 
overall clustering. The variable importance chart can only be generated for supervised ML 
algorithms, while k-means clustering is an unsupervised ML algorithm. Hence, a proxy approach 
was used by making the calculated clustering identifier (cluster ID) the predicted variable (i.e., 
labeled data) and the geologic data as the independent data (or features in ML terminology). This 
approach enabled the supervised ML algorithms to be used to calculate the variable importance 
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chart. For this application, the random forest (RF) algorithm was used to generate a variable 
important plot. RF is a ML algorithm that utilizes a multitude of decision trees that randomly 
sample the features and the data and use the mean prediction of the individual trees (Breiman and 
others, 1984). The RF algorithm measures the importance of variables by evaluating the loss of 
prediction performance (e.g., root mean square error or accuracy) that occurs by eliminating 
independent variables one by one and permuting its values across all trees. The permutation 
procedure is carried out by randomly shuffling the values of the variable in the out-of-bag sample 
while keeping all other variables the same.  
 

5.5.2 Variable Importance Charts for Individual Clusters  
 
 The variable importance chart built for individual clusters explains how the variables 
contribute to form that specific cluster. Unlike the variable importance chart for all the clusters, 
there is only one clustering ID, which makes using the proxy models such as RF classification 
algorithm meaningless. To overcome this issue, density plots of each variable were constructed. 
The variable contribution score was calculated as the area under the density curve. The area score 
approach is better than evaluation of the mean values of the variables to determine which variable 
is more important because the scales of the variables are different. To determine the variable 
importance for individual clusters, the variable with the larger area score was considered as having 
a larger contribution in forming the cluster.  
 
 
6.0 BPS CLUSTER ANALYSIS CALCULATOR 
 
 The final geologic clustering results for the BPS were integrated into a web-based interactive 
dashboard called the BPS cluster analysis calculator, a stand-alone, web-based dashboard created 
using an application developed by Rshiny. The calculator is available to BPOP members through 
a link on the members-only website. This online calculator is fully interactive and allows the user 
to select the clustering algorithm (k-means, hierarchical, or model-based), data types (geologic and 
reservoir properties, source rock geochemistry data, brine chemistry data, and oil and gas 
properties data), and number of clusters. A general outline of the calculator interface is shown in 
Figure 3. 
 
 The calculator is accessible via an online dashboard, where users can interactively build the 
clustering results according to their specific data needs. The dashboard consists of 1) a sidebar 
where the user can choose different cluster analysis scenarios and 2) a main page where the 
clustering results and associated variable properties analysis and control variables are presented. 
Details of the calculator dashboard are described as follows. 
 

6.1 Sidebar 
 
 The sidebar is located on the left-hand side of the dashboard and has two functions available 
to users to interactively choose different geologic clustering scenarios. The first function is the 
clustering algorithm, which allows the user to select from a dropdown list of three different 
clustering algorithms: k-means, hierarchical, and model-based clustering. The second function 
allows users to specify different numbers of clusters ranging from three to 12.  
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Figure 3. User interface for the web-based interactive BPS cluster analysis calculator. 
 
 
 In addition to these two functions, the sidebar has a Download Data button that provides 
users with the option to download the data they chose to include in the clustering as well as the 
final assigned cluster ID for each well. There is a short description on the dashboard explaining 
how to use different tools to interactively perform cluster analysis based on different scenarios. 
 

6.2 Main Page 
 
 The main page of the dashboard shows the cluster analysis results and associated analysis. 
The main page consists of five tabs: 1) a map of the cluster analysis results, 2) property plots, 
3) data source map, 4) cluster number determination, and 5) variable selection tools. Each of these 
components of the main page is described in greater detail as follows. 
 

6.2.1 Cluster Analysis Results Map 
 
 The cluster analysis results map shows the nine BPS counties included in the database and 
polygons delineating the cluster analysis results based on user inputs. The user can click on a 
specific cluster to obtain the variable importance map for the individual cluster on the right tab 
under the Property Plots tab. 
 

6.2.2 Property Plots 
 
 The property plots tab includes three plots: a boxplot on the top and two variable importance 
plots on the bottom. The boxplot shows the distribution of the selected variables among different 
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clusters. The boxplot helps to understand how different variables behave in different clusters. The 
whiskers of the boxplot show the minimum and maximum values, while the box shows the 
interquartile range (IQR) from the 25th percentile (P25) to the 75th percentile (P75). The 
horizontal line in the middle of the IQR shows the median, or 50th percentile (P50). Above the 
boxplot, there is a dropdown menu where users can select the variables they want to show in the 
boxplot. 
 
 There are two variable importance charts. The variable importance chart on the left shows 
the contributions of the selected variables to the classification of all clusters. The variable 
importance chart on the right shows the importance of the selected variables within a single cluster 
that the user selects from the map. 
 

6.2.3 Data Source 
 
 The data source tab shows a map with the spatial distribution of all geologic variables in the 
data set used for the cluster analysis. There is a dropdown menu on top of the map where users can 
select the variable they want to visualize in the map. The map shows the spatial distribution of 
locations of the original point data sources as well as the number of wells of the point sources. 
 

6.2.4 Cluster Number Determination 
 
 The cluster number determination tab helps users to determine the optimum number of 
clusters to include in the cluster analysis. This tool is only a reference for users who may also apply 
their own domain knowledge to select the optimum cluster number from three to 12. The tool is 
designed to be interactive with the specific clustering algorithm. For example, the elbow approach 
plotting WSS versus number of clusters is used to guide the selection of the k number for k-means 
clustering. A dendrogram plot is used to select the k number for hierarchical clustering. Lastly, a 
Bayesian information criterion (BIC) plot of various models is used to select the k number for the 
model-based clustering algorithm. It should be noted that the calculation of the BIC plot for the 
model-based clustering can take additional time because of the complexity of the calculations. 
 

6.2.5 Variable Selection Tool 
 
 At the bottom of the main page is the variable selection tool. There are three sets of checkbox 
selection tools available to the user to customize the list of variables or subsurface parameters used 
in the cluster analysis. The default selection of variables includes all geologic and geochemical 
variables except for Bakken thickness as well as the variables of Bakken oil gravity and the ratio 
of C1/C3 of Bakken produced gas. To customize variable selection, users can check or uncheck 
any variables listed in the three main categories. The cluster analysis will automatically update to 
reflect the checked variables. 
 
 
7.0 EXAMPLE APPLICATION OF THE BPS CLUSTER ANALYSIS CALCULATOR 
 
 This section provides an example application of the BPS cluster analysis calculator and 
walks the user through variable selection, cluster analysis implementation, and interpretation of 
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results. The calculator is an interactive tool that allows the user to select literally hundreds of 
different combinations of variables; therefore, the example shown here is solely for illustration 
purposes. 
 

7.1 Variable Selection Tool 
 
 The first step in the cluster analysis is to select the input variables that the tool will use to 
group the wells into clusters. These selections are made under the variable selection tool at the 
bottom of the main page. 
 
 For the current example, two categories of variables were used in the cluster analysis. All 
the geologic and geochemical variables were selected. In addition, two of the oil and gas property 
variables were selected: oil API gravity (BK) and C1/C3 (BK) gas compositional ratio, where BK 
refers to the Bakken Formation (Figure 4).  
 
 

 
 

Figure 4. Example screenshot of the variable selection tool showing the selection of all 
geologic and geochemical variables and oil and gas property variables of oil gravity (BK) 
and C1/C3 (BK). 

 
 

7.2 Cluster Analysis Results and Interpretation 
 
 Figure 5 shows the cluster analysis results map for selection of all geologic and geochemical 
variables, oil and gas property variables of oil gravity (BK) and C1/C3 (BK), and number of 
clusters set to 12 (the maximum) or four clusters. Figure 6 shows the associated elbow method 
plot from the cluster number determination tab. As shown in Figure 6, while 12 clusters provide 
the minimum WSS, there is a significant decrease in WSS from one to four clusters (from 
approximately 6500 to 3500), which asymptotically improves with each additional cluster from 
five to 12. The 12-cluster map is only shown for comparison purposes, and all subsequent results 
and interpretations are based on the four-cluster map. The four-cluster map was selected for two 
primary reasons. First, the boundaries of each cluster are well-defined and do not result in an 
overlapping mosaic of clusters like the 12-cluster example. Second, the geologic and geochemical 
variables driving classification, as shown in the variable importance charts, are consistent with 
domain expertise in the BPS, described as follows.  
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Figure 5. Cluster analysis results map using all geologic and geochemical variables, oil and 
gas property variables of oil gravity (BK) and C1/C3 (BK), and setting the cluster number 
equal to 12 (left) and four (right). 

 
 

 
 

Figure 6. Elbow method plot for the k-means example using all geologic and geochemical 
variables and oil and gas property variables of oil gravity (BK) and C1/C3 (BK). 
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 Figures 7 and 8 show the feature importance charts for Cluster N3 and Cluster N4, 
respectively. Cluster N3, which comprises central and eastern McKenzie County, northwestern 
Dunn County, and a portion of southern Williams County, has the highest average oil production 
performance, the greatest reservoir depth, and the highest reservoir temperature and pressure. 
These geologic settings translate into higher maturity levels of source rocks (Upper and Middle 
Bakken shales), as indicated by the highest Tmax and lowest HI (or higher transformation ratio) 
values. The bulk hydrocarbon properties impacted by higher thermal maturity are characterized by 
the highest API gravity values, the lowest paraffin and sulfur contents, and dryer gas composition. 
The variable importance chart for Cluster N3 supports these interpretations and shows that gas 
composition, reservoir temperature, pressure, depth, and maturity indicators have the highest 
importance coefficients (Figure 7).  
 
 In contrast to Cluster N3, Cluster N4, which comprises northern Billings County, 
northeastern Golden Valley County, and southwestern McKenzie County, has the lowest average 
oil production performance, Bakken and Three Forks thickness, reservoir porosity, and TOC 
content in the source rocks (Upper Bakken Shale [UBS] and Lower Bakken Shale [LBS]). The 
variable importance chart for Cluster N4 supports these interpretations, as formation thicknesses 
and TOC content in the source rocks have the highest importance coefficients (Figure 8). 
 
 

 
 
Figure 7. Cluster analysis results map (left) and variable importance chart for Cluster N3 
(right) for the k-means example using all geologic and geochemical variables and oil and 
gas property variables of oil gravity (BK) and C1/C3 (BK). 
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Figure 8. Cluster analysis results map (left) and variable importance chart for Cluster N4 
(right) for the k-means example using all geologic and geochemical variables and oil and gas 
property variables of oil gravity (BK) and C1/C3 (BK). 

 
 
 Figure 9 depicts boxplots of 6-month cumulative oil production, Middle Bakken thickness, 
Upper Bakken TOC, and Oil API gravity for Clusters N1 through N4, which were obtained from 
the property plots tab and further support the interpretation of the variable importance charts and 
cluster assignments. As shown in the figure, there were significantly different distributions of these 
four variables among the clusters. These supporting figures and other information available from 
the data source and property plot tabs provide additional lines of evidence for incorporating cluster 
groupings into future work on production optimization. The BPS cluster analysis calculator 
therefore provides the user with an interactive experience for investigating the cluster analysis 
results and interpretations. 
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Figure 9. Boxplots of cumulative 6-month oil production, Middle Bakken thickness, 
Upper Bakken TOC, and Oil API gravity for the k-means example using four clusters 
and all geologic and geochemical variables and oil and gas property variables of oil 
gravity (BK) and C1/C3 (BK). 
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8.0 CONCLUSIONS 
 
 Researchers from industry and academia generally agree that both geology and completion 
design parameters control well production performance in unconventional oil and gas plays like 
the BPS. Geologic properties of the reservoir characteristics on a basin or play scale are often not 
directly measured and consequently omitted from many analyses of production performance. 
However, ignoring geologic factors and heterogeneity fails to adequately capture the effect that 
geology may have on the production result. Ignoring a major source of variation may result in 
weak or even inaccurate prediction models, which are used in completion optimization evaluations. 
The purpose of this work was to develop a tool to help provide a quantitative means for integrating 
geologic factors into analyses of the BPS.  
 
 Two data collection efforts were conducted to create a database using publicly available, 
internal, and commercial data sets. First, a completion and production master database containing 
about 14,700 wells located in the BPS was updated, cleaned, and organized for further analysis. 
Second, geologic and geochemical information was compiled for the purpose of implementing 
cluster analysis for the wells in the master database. 
 
 A web-based BPS cluster analysis calculator was built to allow the user to interactively 
group portions of the BPS into clusters based on sets of input variables. The calculator allows the 
user to select variables or subsurface characteristics, method of cluster calculations, and number 
of clusters. The calculator provides a convenient tool to interpret results including an interactive 
map showing cluster outlines, variable importance charts, cluster number determination plots, data 
location map, and variable distribution plots. 
 
 The BPS cluster analysis calculator will be incorporated into future BPOP completion 
optimization calculations by including geologic clusters in the list of production performance 
predictors or through the stratification of analyses by geologic cluster. The EERC team believes 
that this will significantly improve the evaluation of optimal completion parameters at various 
locations within the BPS.  
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DATA COLLECTION PROCESS 
 
 

 The Energy & Environmental Research Center (EERC) maintains an up-to-date master well 
database storing a variety of parameters in Petra, SQL Server, spreadsheet, and text files. North 
Dakota well data are primarily sourced from the North Dakota Industrial Commission (NDIC) 
website, FracFocus, and Enervus’s DrillingInfo app. Other data sources include literature, maps, 
and internal interpretations. The ETL (extract, transform, load) process was applied to the available 
information with a goal of creating a data set with a single row of completion data for single lateral 
wells so that in-depth analysis can be performed on initial well performance.  
 
 Through the Bakken Production Optimization Program (BPOP), a master data set was 
created to include as much well completion data as possible. DrillingInfo was used as the primary 
data source as, at the time, it was the most comprehensive data source. The DrillingInfo well header 
is one big table that includes general well information, well completion data, cumulative 
production metrics, and estimated ultimate recovery (EUR) calculations. If a well has multiple 
completion entries, more than one lateral, or sidetracks, a singular API (American Petroleum 
Institute)/UWI (unique well identifier) will have multiple rows of data. To be able to do an in-
depth analysis and avoid counting a well more than once, all well information was normalized 
(merged) into one row of data per API-reservoir.  
 
 The complexity of DrillingInfo well data records is shown below. The DrillingInfo well 
header data table consisted of 38,516 distinct UWI in API14 format. Of these, 5623 UWIs had 
more than one data entry. 4241 UWIs had two rows of data, 959 had three rows of data, and 423 
had four or more rows of data. Wells may have more than one completion record because of 
recompletion or multilaterals. Other wells might have multiple rows of data based on DrillingInfo 
joining multiple tables together that had a one-to-many pairing. An example of this is when 
completion records were entered with more than one entry, mirroring what was input on NDIC 
Form 6 by the original operator. Another example is DrillingInfo including multiple survey data 
points, such as sidetracks, as part of its joined table. 
 
 The first step was to reduce the well information to only Bakken petroleum system wells. 
Because of the row duplication problem and other data errors in allocation of producing formation, 
data from NDIC monthly state production (www.dmr.nd.gov/oilgas/feeservices/stateprod.asp) and 
Bakken horizontal wells by producing zone (https://www.dmr.nd.gov/oilgas/bakkenwells.asp) 
were used to filter for Bakken, Three Forks, or Spanish wells by producing formation. This resulted 
in 15,703 total wells and 12,415 of which had a single row of data in DrillingInfo. 2629 wells had 
two rows of data, 498 had three rows of data, and 151 wells had four or more rows of data. The 
date range was then set to only wells that started to produce in 2008 or later, resulting in  
a 12,039 well count with one row of data and 2917 wells with two or more rows of data. 
 
 To reduce the number of wells that required manual review (from all source data), the  
114 wells with four or more rows of data were removed from the data set. Of the 14,814 wells 
remaining, NDIC survey data for the wells were assessed and how many laterals and sidetracks 
each well has were determined. 123 wells were identified as having two to three laterals and 
removed. The final well list consisted of 14,691 single lateral wells.  

http://www.dmr.nd.gov/oilgas/feeservices/stateprod.asp
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 The next step was the review of the completion parameters data, such as lateral length, 
perforation length, total fluid, total proppant, stages, etc. It was discovered that DrillingInfo’s “perf 
interval” and “lateral length” values have deviated from the 2019 BPOP data set that used those 
values from the same source. DrillingInfo appears to source from NDIC Form 6, the operator 
drilling report in the well file, and FracFocus, but the changes seen from 2019 and 2020 are 
unexplained. To be complete and accurate, a data source priority list was used for well completion 
parameters. NDIC has shared with the EERC a data file that has some (not all) Form 6 data 
digitized (NDIC Stim). The data source priority list was NDIC Stim, BPOP 2019 data set, 
DrillingInfo 2020 download, FracFocus. NDIC Stim is not without flaws, and data were reviewed 
for any outliers for each variable. Most errors identified were typos by whomever originally 
digitized the data at the source or by the operator submitting the data.  
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