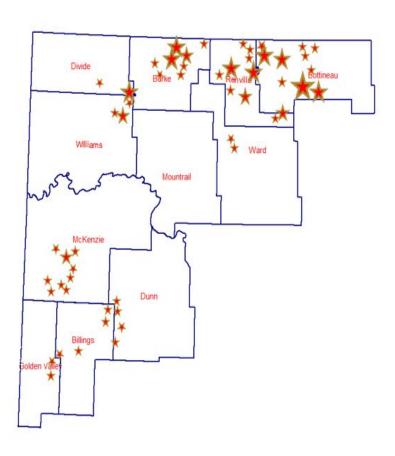


Maximizing Production from Residual Oil Zones in Western North Dakota


Testimonial Presentation of Kyle Gardner

North Dakota Oil & Gas Research Program

July 20, 2023

Cobra Oil & Gas Corporation

Madison Formation Fun Facts

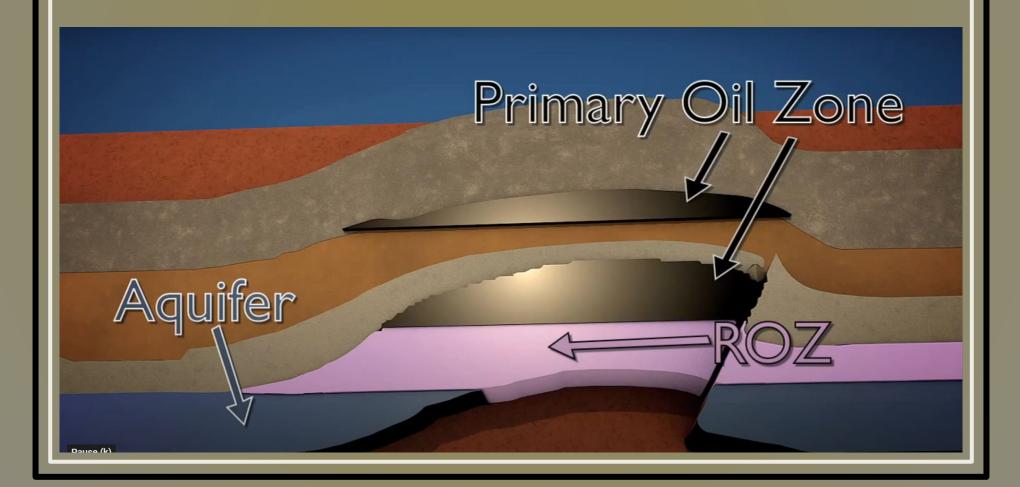
- Conventional carbonate reservoir.
- Contains reservoir quality rock throughout the basin.
- Can source its own hydrocarbon.
- Has produced >1,000,000,000 BO.
- Has been identified as a Residual Oil Zone (ROZ) formation via academic research and empirical production data.
- Full Madison stratigraphic section has been penetrated in <u>ALL</u> Bakken/Three Forks wells.

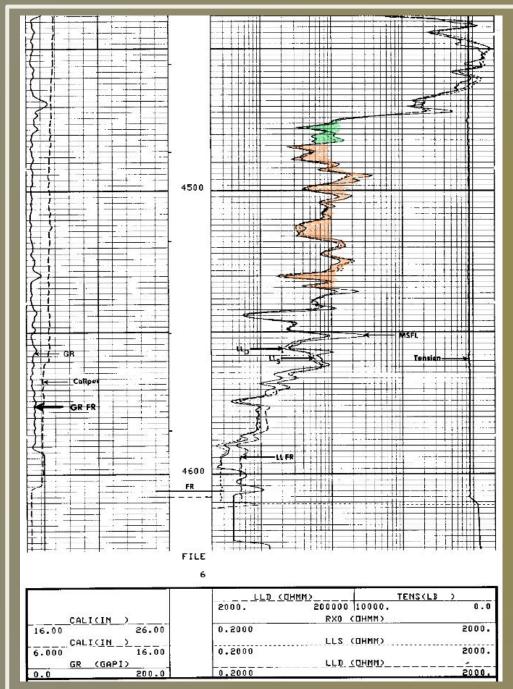
What is a Residual Oil Zone (ROZ)?

- A section within the stratigraphic column of a formation that exists below the "oil-water contact" of a reservoir which contains "immobile oil."
- These sections of reservoirs have been naturally water flooded by 3 different criteria.
- In result, remnants of oil are stranded within sections of rock that the oil once migrated through.

Types of ROZ

- <u>Type I</u> Occurs when an existing hydrocarbon accumulation in a trap is subjected to a regional tilt (tectonically induced). Forcing oil to re-establish a new equilibrium.
- TYPE II Occurs when a trap's seal is breached & allows for some or all of the hydrocarbon accumulation to vertically migrate from the trap, up the stratigraphic section.
- **TYPE III** Similar to Type I but the static hydrocarbon accumulation undergoes a tilt due to ground water flows within the reservoirs.




Methods to Exploit the ROZ

- CO2 Injection into the ROZ allows the CO2 to become miscible within the oil droplets which in result lowers the oil interfacial surface tension, reduces viscosity and helps vacate the oil from the rock.
- Depressurizing the ROZ lowers the reservoir pressure within a radius around the wellbore to the bubble point pressure which allows the oil droplets to swell from gas expansion within the oil and helps vacate the oil from the rock.

Type II ROZ

Type II ROZ

- Standard conventional approach "Pop the Top"
- Cobra Oil & Gas ROZ approach (orange section)
- Rock data, petrophysical data, mudlog data, & production data support a Type II ROZ.

CORE LABORATORIES, INC.

PAGE NO. Petroleum Reservoir Engineering

DALLAS, PEXAS

FORMATION : MISSION CANYON DRLG. FLUID: SALT GEL NO OIL

LOCATION

STATE

: NORTH DAKOTA

DATE FILE NO. : ANALYSTS : ELEVATION:

RENVILLE COUNTY

CONVENTIONAL CORE ANALYSIS

SAMP.	HT430	PERM. TO AIR (MD) HORZ. VERTICAL	A CONTRACTOR OF THE PARTY OF TH	FLUID SATS. DIL WATER	GR. ONS.	DESCRIPTION
1 2 3 4 5 6 7	4572-73 4573-74 4574-75 4575-76 4576-77 4577-78	APPROVING A	13.5 18.5 12.0 18.5 6.5 12.8		CVF	LM FN XLN VUGGY CALC INF. LM FN XLN VUGGY CALC INF. LM FN XLN VUGGY CALC INF. LM FN XLN SCAT YUGS CALC INF. LM FN XLN SCAT YUGS CHKY LM FN XLN VUGS CALC XTAL LM FN XLN VUGS CALC XTAL LM FN XLN VUGS CALC XTAL
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4579-80 4580-81 4581-82 4582-83 4583-84 4584-85 4586-87 4587-88 4588-89 4589-90 4590-91 4591-92 4592-93 4593-94 4594-95 4595-96	0.39 13 3.8 19 33 7.6 36 14 13 51 7.8 178 13 0.12 0.16 0.66	20.7 10.1 10.2 11.3 11.9 10.0 11.1 11.9 23.4 12.6 18.1 12.5 14.4 9.0 7.7 8.8	23.7 23.7 11.9 31.8 8.8 29.2 18.5 36.9 14.8 28.0 14.0 32.0 14.3 28.6 9.9 38.0 14.8 33.6 26.3 21.7 23.4 23.4 14.1 39.1 18.5 27.8 17.7 28.8 17.7 28.8 12.1 40.3 8.0 48.2 3.6 50.3	CVF CVF CVF CVF CVF	LM OOL SCAT VUGS CALC INF. LM FN XLN SCAT VUGS CALC INF. LM FN XLN CALC INF. LM FN XLN VUGS CALC INF.

CLOSED VERTICAL FRACTURE

These analyses, opinions or interpretations are based on observations and materials supplied by the cities to whom, and for whose ancibalve and confidential use, this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and ornissions excepted); but Core Laboratories, Inc. and its officers and employees, autame no responsibility and make no warranty or

Type II ROZ

- Standard conventional approach "Pop the Top"
- Cobra Oil & Gas ROZ approach (full yellow section)
- Rock data, petrophysical data, mudlog data, & production data support a Type II ROZ.

CORE LABORATORIES, INC. Petroleum Reservoir Engineering DALLAS, TEXAS

PAGE NO. 2

FORMATION : MISSION CANYON DRLG. FLUID: SALT GEL NO OIL

FILE NO.

DATE

ANALYSTS : ELEVATION:

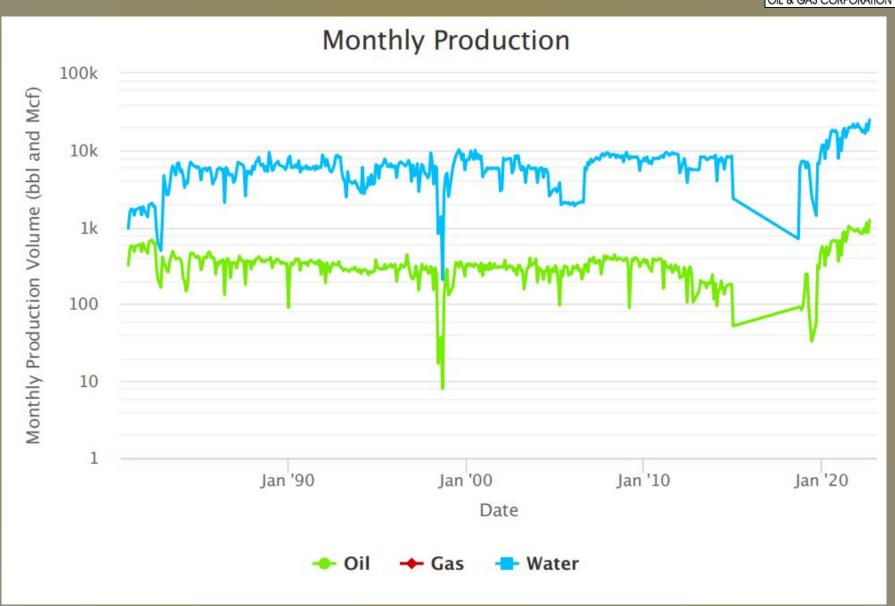
Type II ROZ

Standard conventional approach "Pop the Top"

Cobra Oil & Gas ROZ approach (full yellow section)

Rock data, petrophysical data, mudlog data, & production data support a Type II ROZ.

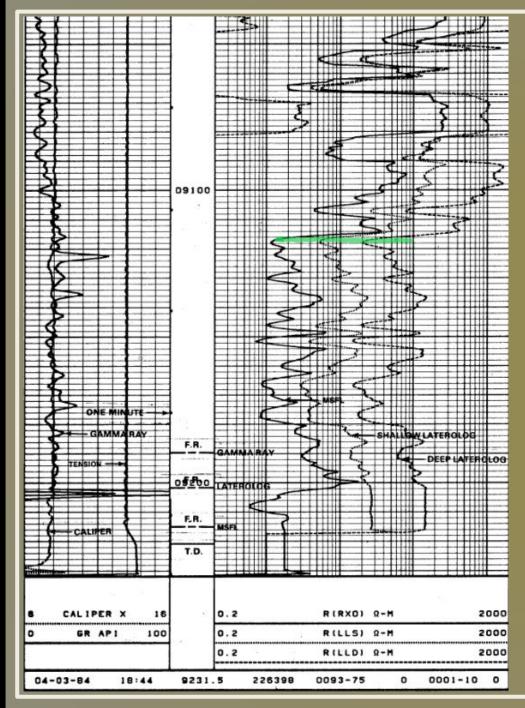
CONVENTIONAL CORE ANALYSIS


: NORTH DAKOTA

SAMP.	DEPTH	PERM. TO HORZ.	AIR (MD) VERTICAL	POR.	FLUID SATS. OIL WATER	GR. DNS.	DESCRIPTION
	*********	-	-	AL TO THE	er sorigit angrassioner son in	-	
26	4597-98	20	100	14.3	8.0 29.5		LM FN XLN CALC INF.
27	4598~99	38	- 1	14.6	The second secon		LM FN XLN CALC INF.
28	4599 -0	2.6		13.3	11.6 26.0		CVF LM FN XLN VUGS CALC INF.
29	4600 -1	200		15.2	100 CO VOLUM 200 CO CO		CVF LM FN XLN SCAT VUGS CALC INF.
30	4601 -2	11	2000	11.5	15.2 28.8		CVF LM FN XLN SCAT VUGS CALC INF.
31	4602 -3	157	2 0 2	21.7	1. TATACOCK		CVF LM FN XLN OOL CALC INF.
32	4603 -4	250	2.53	18.3			CVF - LM FN XLN VUGS CALC INF.
33	4604 -5	31	1 1	17.9			CVF LM FN XLN OOL CALC INF.
34	4605 -6	314	0.00	15.8	CONTRACTOR OF CONTRACTOR		CVF LM FN XLN OOL CALC INF
35	4606 =7	61	- 0.5	18.1	15.5 35.2	8:	CVF LM EN XLN CALC INF.
36	4607 -8	. 93		15.2	17.4 32.4	11	LM FN KLN CALC INF.
300	4608-4612	1.55%		10.0	7144 2554	4	NO ANALYSIS LS
37	4612-13	24		10.6	13.1 26.1	1.0	CVF LM FN XLN CALC INF.
38	4613-14	6.5		7.0	3.0 62.7	1.0	
39	4614-15	113		9.1	2.3 51.9		
40	4615-16	41		2,750	5 D D S S S S S S S S S S S S S S S S S		CVF LM V/FN XLN CALC INF.
	4616-4623	44		8.9	1.1 43.2	387.5	CVF LM V/FN XLN CALC INF.
41	4623=24	0.03		6.7	7.7 33.8		NO ANALYSIS LS
42	4624-25	5.8	- 8			E	CVF LM V/FN XLN CALC INF.
46.	1054450	6+0		10.9	16.3 29.0	10	CVF LM V/FN XLN SUC CALC INF.

CVF CLOSED VERTICAL FRACTURE

These studyess, opinions or interpretectors are based on observations and materials supplied by the client to whom, and for whose exclusive and undidential use, this apport is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories, Inc. (all errors and outsidess exempted); but Core Laboratories, Inc. and its officers and employees, assume no responsibility and make no warranty or representations as to the productions represent constraints or profit chineses of source state without what we need to consection with which such secund to confud constraints.



Type II ROZ Results (Mission Canyon – Renville County, ND)

- After completing the full section of the productive Mission Canyon bed, oil cut increased with increased takeaway from increased reservoir deliverability.
- Cobra Oil & Gas deems this a method of reservoir depressurization.
- Like the San Andres ROZ plays of the Permian Basin, Cobra Oil & Gas believes the Mission Canyon ROZ potential could cover large areas of the Williston Basin.

Type III ROZ

- Standard conventional approach "Pop the Top"
- Unconventional approach to Type III ROZ example.
- Rock data, petrophysical data & mudlog data support a Type III
 ROZ over a wide range of the Williston Basin.
- Large section and high deliverability of fluid makes this ROZ formation more attractive for CO2 injection.

TerraTek Core Services, Inc."

University Research Park - 360 Wakura Way - Salt Lake City, Utah 84108 - (801) 584-2460 - TWX 910-925-5284

Page 2

Type II/III ROZ

- Standard
 conventional
 approach "Pop
 the Top"
- Unconventional approach to Type II/III ROZ example.
- Rock data,
 petrophysical
 data & mudlog
 data support a
 Type III ROZ over
 a wide range of
 the Williston
 Basin.

1-	hand b	Permembility	Parositu	Satur Gil	ation H20	Grain Density	Lithology
ample umber	(7) (7) (7) (7) (7) (7)	Horz (md)	(7)	(2)	(%)	(su/cc)	
*** ***	acres than the sales alone speed of	age and specific series specific	na win that arm new				4 miles and third miles made that and made also are made what cold
19	9186.0-87.0	7.0	14.0	24+2	26.0	2.79	Dol:mal:s1/1ms
20	9187.0-88.0	21	17.5	38.8	21.3	2.81	Dolymxl,s1/lmw
21	9188.0-89.0	9.6	14.8	36.3	22,4	2.82	Dol:nxl:sl/lns
22	9189,0-90.0	3,2	11.9	37.5	25.6	2.78	Dolomxlolms
23	9190.0-91.0	0.04	4.3	10.8	18.4	2.78	Bol,mx1,1ms
24	9191.0-92.0	24	15.6	63.9	21.3	2.83	Dol:mx1
25	9192.0-93.0	11	14.4	30.2	17.0	2.84	Pol:mxl
26	9193.0-91.0	0.14	6.5	5.7	32.1	2.79	Lsimalidol
27	9194.0-95.0	0.40	4.5	21.6	39+6	2.81	Lainklidol
20	9195.0-96.0	13	13.0	48.4	30.5	2.81	Dol:mxl
29	9196.0-97.0	33	18.6	41.8	24.1	2.83	Dolomai
30	9197.0-98.0	20	16.5	53.2	14.3	2.82	Bolemal
31	9198.0-99.0	5.1	13.2	35.8	19.4	2.81	Dol:mx1:s1/lny
32	9199.0-00.0	2.7	11.6	48.3	24.6	2.79	Dol:mxl:sl/lmg
33	9200.0-01.0	4+8	13.0	18.0	9.0	2.76	Bolomales1/lms
	9201.0 - 9201.5						Not Suitable for Analysis
	9201.5 - 9202.0						Not Recovered
34	9202.0-03.0	2.9	13.8	45.2	39+1	2,85	Nol - f-axl
35	9203.0-04.0	0.51	10.4	17.9	56.1	2.85	Dol:f-mx1
36	9204.0-05.0	7.5	16.3	34.6	32+6	2.84	Dol-f-exi
37	9205.0-06.0	7.5	18.5	39.2	43,1	2.84	Dol:f-mxl
30	9206.0-07.0	0.22	16.1	5.2	71 - 1	2.85	Dol of - nxl

TerraTek Core Services, Inc.®

University Research Park - 360 Wakara Way - Salt Lake City, Utah 84108 (801) 584-2480 TWX 910-925-5284

Page 3

THE STATE SHEET WHEN MADE WHEN THE SHEET SHEET WHEN SHEET WAS ARRESTED AND WHEN THE WORLD WAS ARRESTED AND WHEN THE WA	

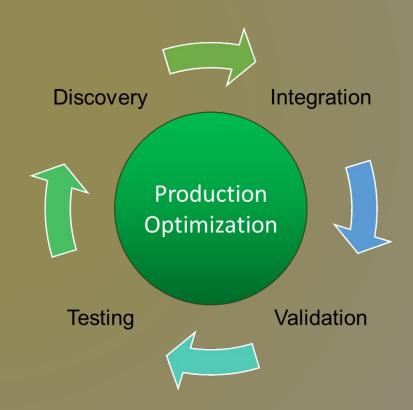
		Permeability	Porosity	Saturation		Grain	Lithology
anele	Derth	Horz		0i1	H20	Density	
unber	(feet)	(bd)	(2)	(2)	(2)	(sm/ce)	
	when here displacement when	and here adhe spak days prosp on	has make these with which is	THAT WITH BUTT BY	an series many area		
39	9207.0-08.0	18	15.5	9.4	56.3	2.83	Dol.f-m×1
40	9208.0-09.0	0.58	12.9	25.3	40.8	2.84	Dol.f-sxl
41	9209.0-10.0	0.44	10.0	19.0	47.1	2.83	Polyf-mx1
42	9210.0-11.0	1.4	13.3	40.6	28.5	2.82	bol, f-oxl
43	9211.0-12.0	0,14	8.4	11.5	56.2	2.82	Bol.fxl,sl/lns
44	9212.0-13.0	0,01	4.0	9+2	45.9	2.79	Dol.fxl.si/las
45	9213.0-14.0	0.04	8.5	9.9	46.2	2.84	Dolevf-fx1
46	9214.0-15.0	0.22	11.6	8+3	53.9	2.83	bol, vf-fx1
47	9215.0-16.0	0.05	8.7	11.7	59.6	2.83	Dolyvf~fxl
48	9216.0-17.0	0.03	7.4	12+2	52.2	2.83	Bolivf-ful
49	9217.0-18.0	0.02	6 · B	6.2	40.1	2.83	Dol,vf-fxl
50	9218.0-19.0	0.03	9.2	18.0	51.0	2.82	Dol, vf-fgl
51	9219.0-20.0	0.01	9.0	10.2	56.2	2.83	Bolyvr-fxl

Type II/ III ROZ

- Standard
 conventional
 approach "Pop
 the Top"
- Unconventional approach to Type II/III ROZ example.
 - Rock data,
 petrophysical
 data & mudlog
 data support a
 Type III ROZ over
 a wide range of
 the Williston

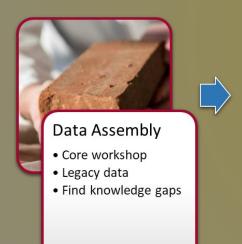
Basin.

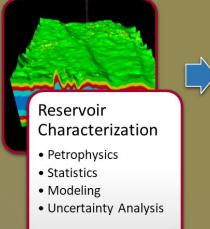
<u>Type II/III ROZ Outlook (Mission Canyon Fryburg Bed – Billings County, ND)</u>

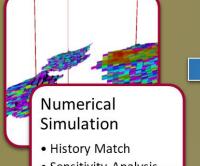

- Assuming adequate fluid handling and disposal/injection capacity, in order to produce the stranded oil in this ROZ, the entire interval should be completed and depressurized or injected with CO2.
- Most of the Mission Canyon Fields are not defined by "dry holes" beyond the limits of productive reservoirs, but by the economic limit of commercial production at that point in time.
- Within the State of North Dakota, Mission Canyon Formation ROZ reserves could be comparable to the estimates of Bakken EOR reserves.

EERC Scope of Work

Investigate strategies to maximize oil recovery


- Data driven model investigation
- Production history and well test validation
- Digital hypothesis testing with partnered field testing and data collection
- Resulting in operational and completion strategies for optimization





EERC Scope of Work

Methodology

- testing
- Recompletion
- Stimulation

EERC Scope of Work

- Data Assembly (Task 1)
 - Procure & audit legacy & proprietary data for analysis
 - Knowledge gap analysis
- Reservoir Characterization (Task 2)
 - Creation of simulation ready, data-driven models for hypothesis testing & subsurface prediction
 - Data collection recommendations
- Numerical Simulation (Task 3)
 - Validation of reservoir models, development strategy testing, & methods recommendation for field testing
 - Model based optimization strategy testing
- Project Management
 - Facilitation & coordination for project schedule & budget
 - Deliverable tracking & compliance

Cobra Scope of Work

- Data Collecting & Field Testing (Task 4)
 - Provide empirically derived database of engineering, geologic and field results from the project field
 - Plan & execute all field equipment upgrades & downhole operations
 - Provide company personnel for all surface and downhole operations
 - Provide safe & operatable usage of existing facilities and operated wells within the project field

References

- 1. Melzer, S., (2006) "Stranded Oil in the Residual Zone." U.S. Department of Energy Report, February.
- 2. Melzer, S., Trentham, R., (2016) "San Andres Formation Residual Oil Zones and Their Relationships to the Horizontal Carbonate Play On the Northern Shelf." Society of Independent Professional Earth Scientists, April.
- 3. Burton-Kelly, M., Dotzenrod, N., Feole, I., Peck, W., He, J., Butler, S., Kurz, M., Kurz, B., Smith, S., Gorecki, C., Energy & Environmental Research Center, (2018) "Identification of Residual Oil Zones in the Williston and Powder River Basins" U.S. Department of Energy, March.

Thank You!

I will gladly answer any questions for further discussion.