

ND Oil and Gas Research Council Meeting

Jose Zaghloul, Ph D Oct 17th, 2025

EXECUTIVE SUMMARY

- ➤ Continental proposes two large-scale world-class Unconventional EOR (UEOR) pilots in two different areas of the Williston Basin. These projects have the potential for changing the field development and production landscape.
- ➤ The proposed pilots alone will bring investments to North Dakota valued at ~ \$60MM.
- ➤ EOR investments have the potential to substantially increase revenue from existing well production. Our conservative size of the prize estimate for EOR in the Williston basin is ~ 3 billion barrels.
- ➤ Continental is building upon experience acquired in the Anadarko, Williston, and Powder River basin pilots. Continental is one of the most successful operators in the Unconventional EOR space. Few operators have Continental's Unconventional EOR experience and expertise.

EXECUTIVE SUMMARY

- Continental explores and promotes the use of new technology and will consider the use of foam (if necessary).
- Continental proactively promotes collaboration with leading operators in the UEOR space.

OUTLINE

- Introduction
- EOR Experience in the US and the Williston Basin
- Continental Resources EOR program & experience
 - Anadarko Basin pilots & ongoing field development
 - Williston Basin Initial pilots
 - Powder River Basin pilot: WGII Phase I prospect
 - Benchmark of Continental's EOR pilots
- Continental EOR High Level Screening Criteria
- Proposed Large-Scale EOR Pilot Projects
 - Durant
 - Clover / Roadrunner
- Final Remarks

INTRODUCTION

Continental Resources: Largest Privately Held Oil & Natural Gas Producer in the U.S. & Leader in America's Energy Renaissance

Founded in 1967 by Harold Hamm

Headquartered in Oklahoma City, Oklahoma Over 1,400 Employees (Oklahoma City + Field Offices)

Top 10 Independent U.S. Producer of Onshore Light Sweet, Oil & Natural Gas

Key Assets Include Williston, Anadarko, Permian & Powder River Basins

Low Cost & Capital Efficient Industry Leader

Corporate Sustainability: Responsibly Sustaining America's Energy Future

WHERE WE OPERATE

Williston Basin
Leading Leaseholder & Producer

MONTANA

WYOMING

Powder River

"Continental will take EOR to a very large scale in the Williston Basin"

Powder River Basin

2020 Expansion

Anadarko Basin

Significant Positions in the SCOOP & STACK Plays

Permian Basin

2021 Expansion into the Delaware and Midland Basins

MONTANA

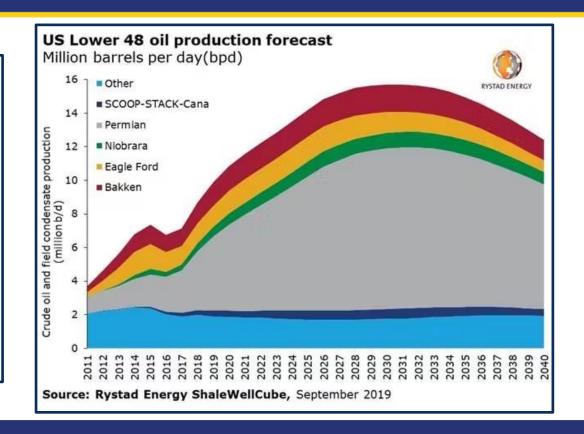
"Continental scaled EOR field development operations in the Anadarko Basin"

NORTH DAKOTA

SOUTH DAKOTA

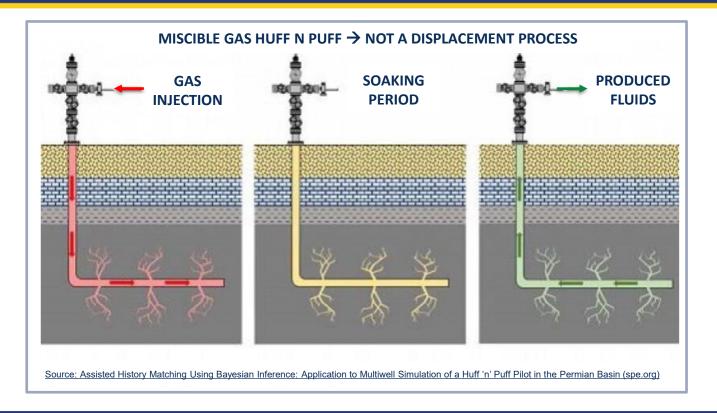
OKLAHOMA

ANADARKO

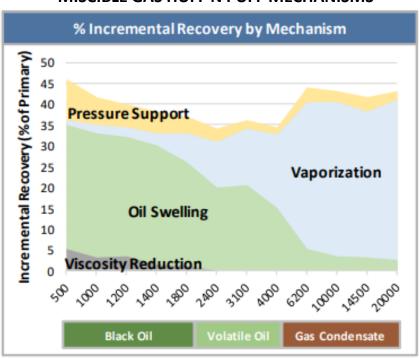

UNCONVENTIONAL PLAYS DECLINE TRENDS

EOR goals:

- a. Increase recovery
- b. Accelerate production
- c. Extended asset life
- d. Increased stream values


When do we start the EOR piloting process?

Process could take 2 – 7 years


HUFF N' PUFF EOR PROCESS

EOR RECOVERY MECHANISMS

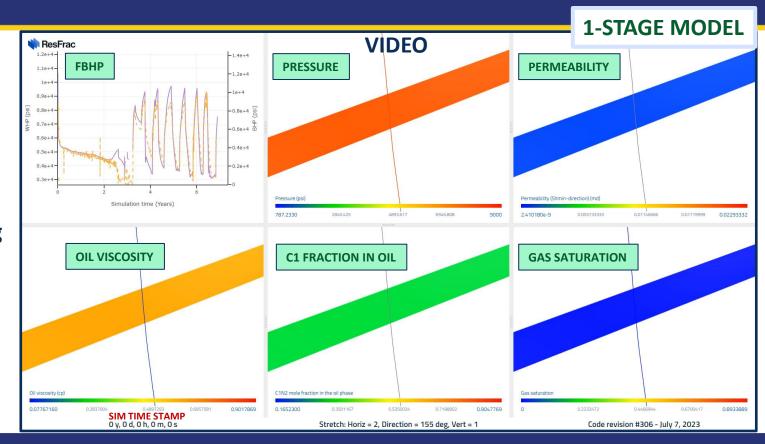
MISCIBLE GAS HUFF N PUFF MECHANISMS

RANKING MISCIBLE GAS HUFF N PUFF MECHANISMS IN BLACK OIL SYSTEMS:

- 1. Oil swelling
- 2. Pressure support
- 3. Viscosity reduction
- 4. Vaporization
- Other Permeability

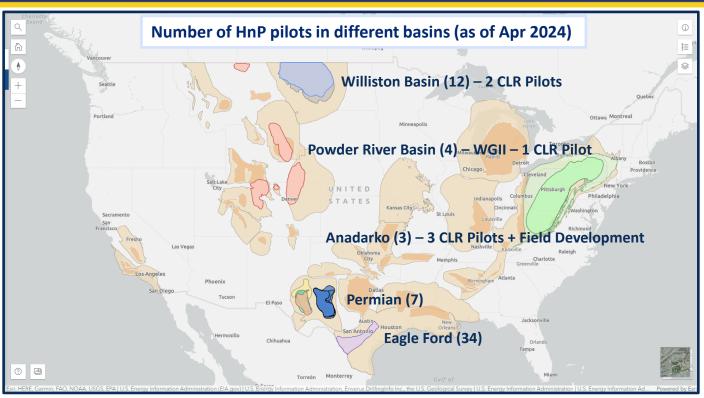
 enhancement due to increasing
 net effective stress

Source: URTeC 147 "Quantitative Evaluation of Recovery Mechanisms for Huff n Puff Injection - T. Hoffman



ANADARKO BASIN – STRASSLE 1-28-33HX PILOT

Continental's
Strassle EOR
pilot


Continental's team modeling evaluation

EOR Mechanisms

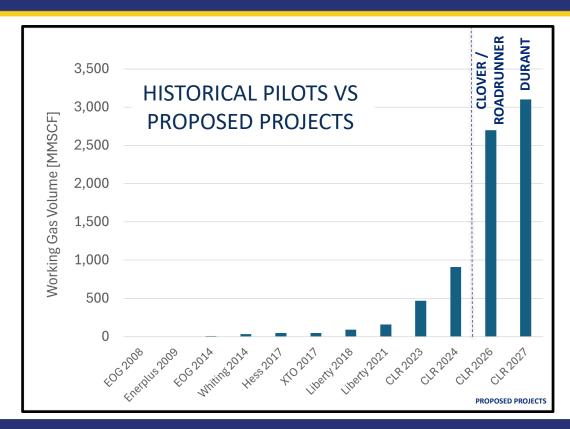
EOR IN UNCONVENTIONAL PLAYS

Source: Tight Oil and Shale Gas Plays | U.S. Energy Atlas (eia.gov)

WILLISTON BASIN EOR PROJECTS

HISTORICAL SUMMARY OF EOR PROJECTS IN THE WILLISTON BASIN

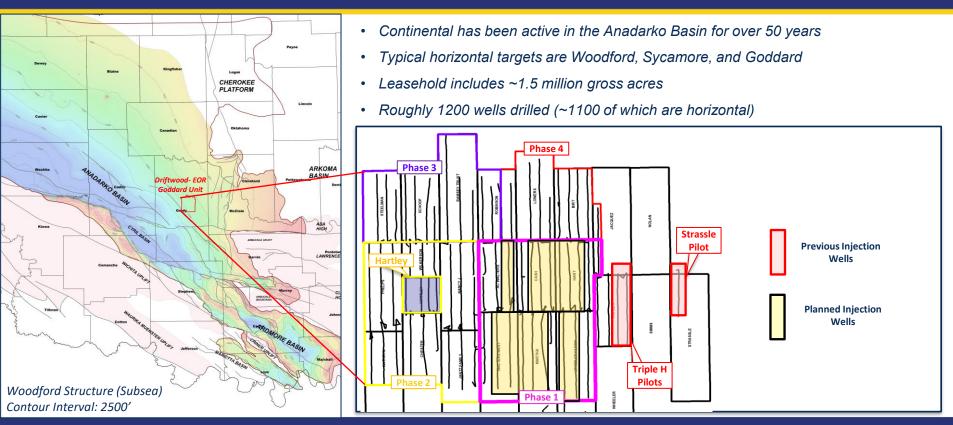
Pilot	Operator	Year	EOR Scenarios		
1	EOG	2008	30.7 MMscf CO2 injection		
2	Enerplus	2009	45 MMscf CO2 injection		
3	EOG	2014	88.7 MMscf field gas injection		
4	Whiting	2014	3.4 MMscf CO2 injection - vertical well		
5	Hess	2017	9.5 MMscf Propane injection - vertical well		
6	XTO	2017	1.7 MMscf CO2 injection - vertical well		
7	Liberty	2018	160 MMscf rich gas injection		
8	Liberty	2021	46 MMscf rich gas + 40 Mbbl water inj + 2400 gal surfactant		
9	CLR	2023	912 MMscf rich gas – 3 cycles - Middle Bakken Pilot – In progress		
10	CLR	2024	470 MMscf rich gas – 2 cycles - Three Forks Pilot – In progress		
11	Hess	2024	Gas- Foam pilot – In progress		
12	XTO	2024	Permit filed		


References: SPE 180270 "Improved Oil Recovery IOR Pilot Projects in the Bakken Formation" (2016)

URTEC 3722974 "East Nesson Bakken EOR Pilot: Coinjection of Produced Gas and a Water-Surfactant Mixture" (2022)

WILLISTON BASIN – PROJECT SCALE

- ✓ The proposed project's working gas volumes will be at least 3 times larger than any pilot in the Williston Basin
- ✓ Our proposed pilots will take Miscible Gas Huff n Puff projects to the next level



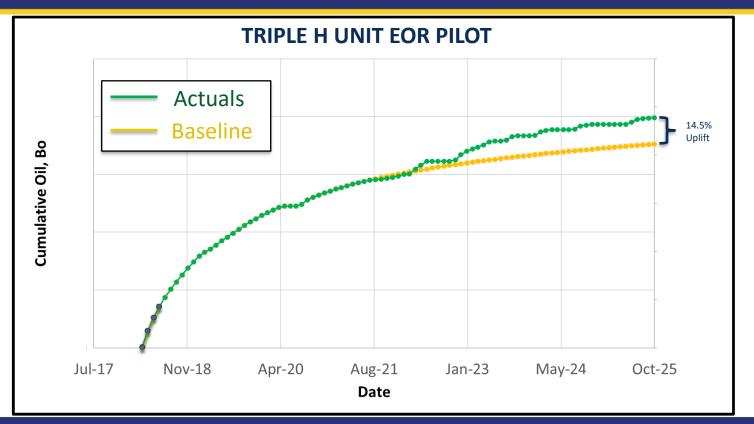
CONTINENTAL'S UNCONVENTIONAL EOR EXPERIENCE

ANADARKO BASIN - DRIFTWOOD SPRINGER

EOR TYPICAL WELLSITE

- ✓ Historically large-scale pilots take between 2 and 7 years .
- ✓ Project infrastructure execution typically takes between 1 and 2 years prior to first gas injection.
- ✓ Procurement alone of large-scale compression units could take up to 75 months.
- Continental's timeline for both proposed projects is 42 months.
- ✓ First gas injection for our proposed projects expected ~ 9 months after the start of facility construction.

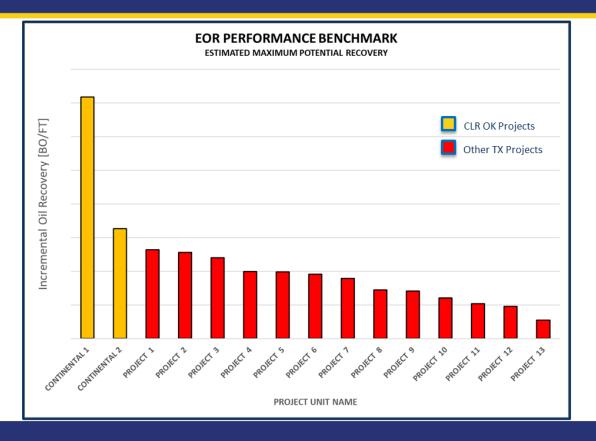
One of Continental's compressors deployed in the Anadarko Basin Simply to put things into perspective



ANADARKO BASIN PILOTS – STRASSLE PILOT

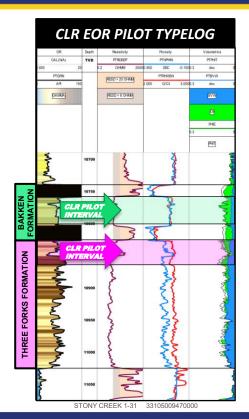
ANADARKO BASIN PILOTS – TRIPLE H UNIT

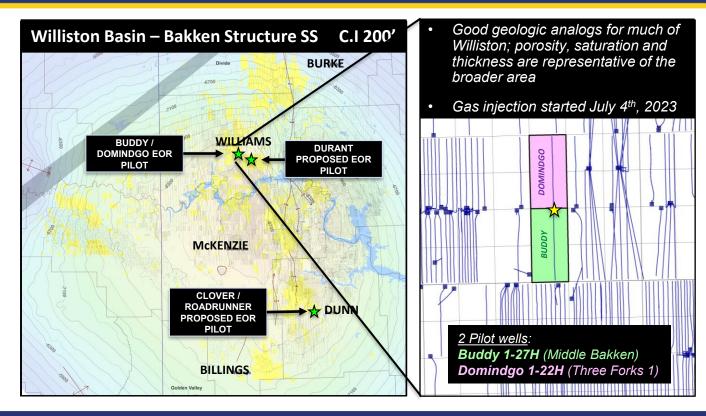
ANADARKO BASIN – GODDARD UNIT FIELD DEV.

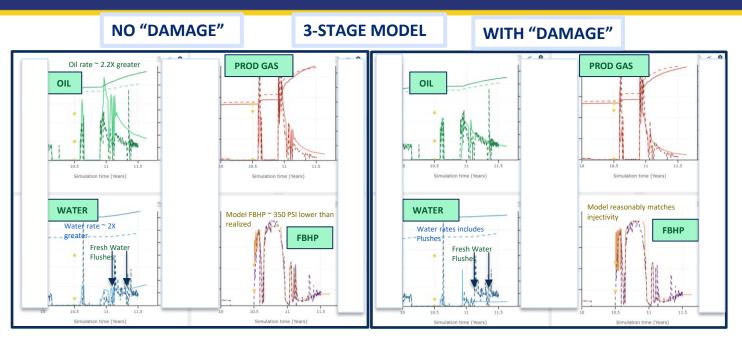

GODDARD UNIT EOR STARTUP CEREMONY

67 WELLS – 4 LARGE-SCALE COMPRESSION UNITS – PHASE 1

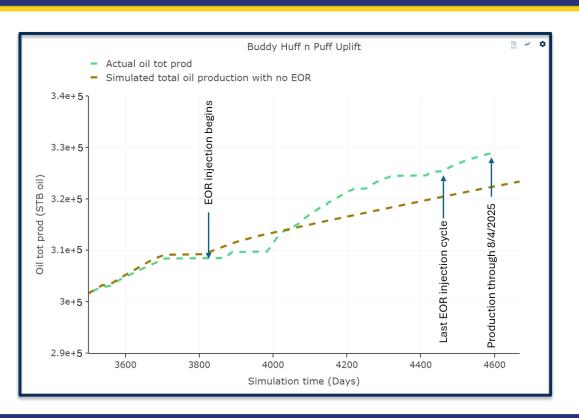
NORTH DAKOTA COULD BE NEXT FOR FIELD DEVELOPMENT EXPANSION




BENCHMARK: CLR VS OTHERS EXPERIENCE


WILLISTON BASIN EOR PILOTS- BUDDY PILOT

WILLISTON BASIN EOR PILOTS – BUDDY PILOT


DAMAGE: Fracture conductivity decline due to solid deposition

Fully Integrated Compositional Fracture / Reservoir Modeling

Model Matching Buddy's Huff-n-Puff performance required introducing some "damage"

WILLISTON BASIN EOR PILOTS – BUDDY PILOT

Technical Success: The Buddy Pilot showed an undisputable uplift (~6,400 BO Incremental)

- Uplift obtained was less than anticipated due to:
 - Small legacy completion designs with significant proppant degradation
 - Apparent flow assurance issues. Salt precipitation, and apparent blockage of some clusters

BUDDY EOR PILOT – LEARNINGS

Learnings:

- Gas containment was achieved within the individual wells.
- Injectivity can be an issue for legacy completion designs.
- In legacy completions, complex geomechanical effects may lead to fractures closing during the HnP cycles leading to poor productivity.
- Fluid miscibility was clearly observed upon flowback.
- Uplift was observed. However, significantly less than expected due to flow assurance issues.
- Salt precipitation and deposition has been an issue during flowback.
- Other flow assurance issues may occur after extended flowback.

WILLISTON BASIN EOR "SIZE OF THE PRIZE"

WILLISTON BASIN POSSIBLE INCREMENTAL RECOVERIES – THEORETICAL EXAMPLE

	OIP (BO)	Recovery Factor	New Recovery
OOIP – Williston Basin (Estimate)	95,950,000,000		
Projected Primary	11,514,000,000	12.0%	
Remaining	84,436,000,000		

	OIP (BO)	Incr. Recovery	New Recovery
Increase from 30% incremental	3,454,200,000	3.6%	15.6%
Assume 50% prospective	1,727,100,000	1.8%	13.8%
Increase from 50% incremental	5,757,000,000	6.0%	18.0%
Assume 50% prospective	2,878,500,000	3.0%	15.0%

[•] The EERC estimates that injecting CO2 could add 5 billion to 8 billion barrels of oil from the Bakken Formation over the next 30 to 50 years

[•] Study pegs potential \$9 billion tax impact for CO2 in North Dakota oil wells • North Dakota Monitor

CO2 VS HYDROCARBON GAS INJECTION

WHAT'S THE BEST INJECTANT TO USE?

CO2 Advantages

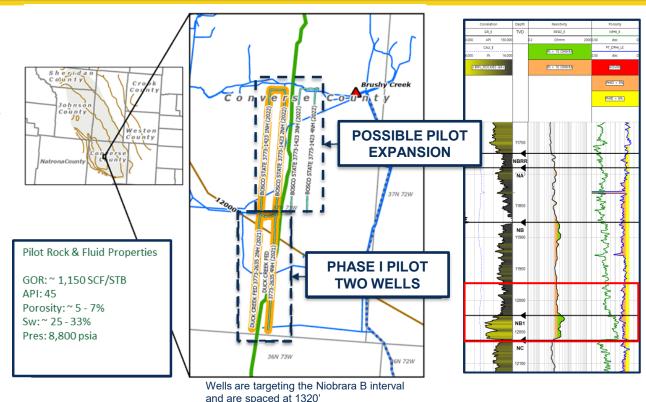
	CO2	Hydrocarbon gas
MMP _[MC]	✓ ~ 2,500 – 3,500 psia	❖ ~3,000 − 5,500 psia
Gas Utilization Factors	✓ Lower GUF (More efficient)	Higher GUF (Less efficient)
Sequestration	√ Added sequestration benefit	Marginal sequestration (if any)
Tax credits	 ✓ Federal sequestration incentives (up to \$65/Ton) ✓ Some states may provide tax incentives 	✓ Some states may offer EOR incentives

Learnings from hydrocarbon gas injection can be translated to CO2 injection

CO2 VS HYDROCARBON GAS INJECTION

CO2 vs HYDROCARBON GAS HUFF N' PUFF

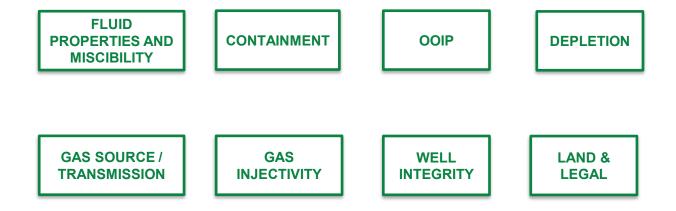
CO2 Disadvantages


	CO2		Hydrocarbon gas	
Source	*	Limited availability	✓	More readily available
Transportation	*	Significant investments often required	✓	Typically requires less investments for transportation
Well integrity	*	May require costly metallurgies and well designs	√	Less likely to produce issues as most wellbores are design for the service
Surface Facilities	*	Req. significant investments for effluent treatment	√	Effluent is ready to the treated in existing processing units
Equipment	*	Req. specialized equipment for treatment and compression	√	More readily available and less expensive
Flow assurance	*	May cause asphaltene precipitation and/or other flow assurance issues	√	Less prone to cause flow assurance issues

Learnings from hydrocarbon gas injection can be translated to CO2 injection

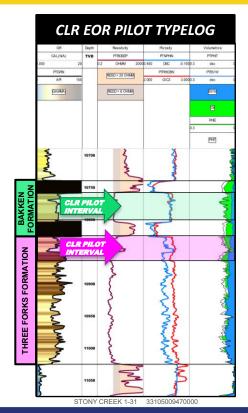
POWDER RIVER BASIN - NIOBRARA EOR PILOT

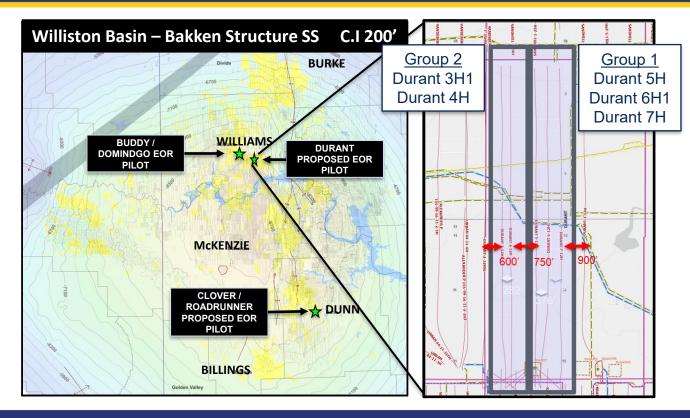
- CLR is participating in the
 Wyoming Gas Injection Initiative
- In partnership with the University of Wyoming, Piri Institute, and Dow
- Grant was useful for progressing the pilot in the current commodity environment
- ND pilots will benefit from the technology learnings
- First gas inj. expected 2Q 2026

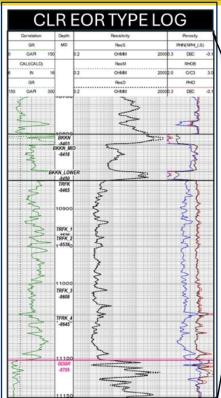


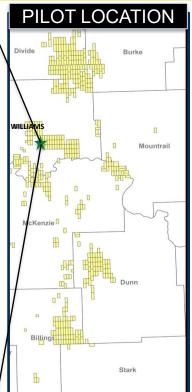
CONTINENTAL'S EOR SCREENING PROCESS

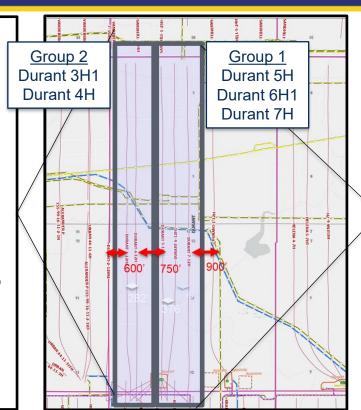
CONTINENTAL'S HIGH LEVEL EOR SCREENING



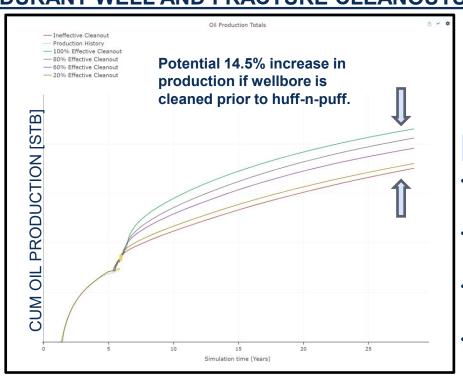

INTEGRATED COMPOSITIONAL FRACTURE/RESERVOIR MODELING PLAYS AN INTEGRAL PART IN OUR TECHNICAL SCREENING PROCESS


PROPOSED EOR PILOT 1 DURANT





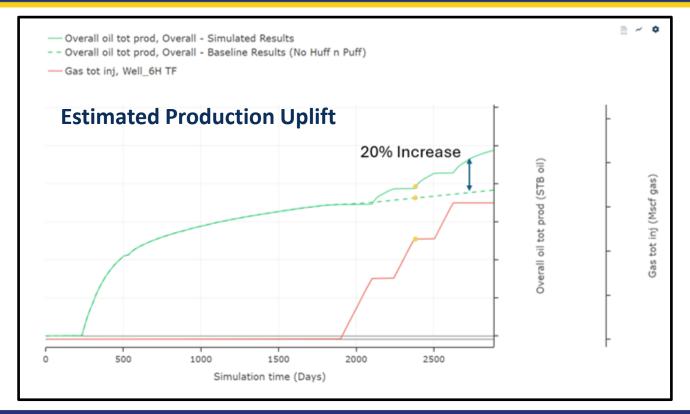
Reservoir	Middle Bakken	Three Forks		
Geology and Petrophysical Properties				
Lithology	Limestone: silty and partially dolomitic	Dolostone: tan interbedded with greenish-blue shale lenses: silty and argillaceous		
Depositional environment	Deposited in the late Devonian to early Mississippian in an offshore marine environment	Deposited in the late Devonian in an arid- evaporitic to shallow marine environment		
Clay content [%]	0.5-25	0.5–35		
Total organic content [wt%]	0.1 – 0.7	0.03-0.3		
Avg Porosity [%]	4.7	6.5		
Avg Water saturation [%]	37	41		
Permeability Range [nD]	700 - 2,700	300 - 1,950		
Fluid Properties				
GOR [SCF/STB]	1,476	1,476		
API gravity	43.6	43.6		
Viscosity [cp]	0.27	0.27		
In Place Volumes				
OOIP [MMSTOB / 640 ACRE]	6 - 10	9 - 14		


- Injection Group 2 Wells
 - Durant 3H1
 - Durant 4H
- 282' well spacing
- 600'-750' well spacing offset from group 1 and offsets
- Potential Injection well:
 - Durant 4H.
- Modelling suggests that well connectivity will be sufficient to pressure up Durant 3H.
- Injection candidate will require cleanout operations



- Injection *Group 1* Wells
 - Durant 5H.
 - Durant 6H1
 - Durant 7H
- 376' 450' well spacing
- 750'-900' well spacing offset from group
- Potential Injection wells:
 - Durant 5H
 - Durant 6H1
- Modelling indicates that well connectivity is sufficient for all wells in group 1 to build pressure
- Injection candidates will require cleanout operations

DURANT WELL AND FRACTURE CLEANOUTS



- Field and modelling data suggests clusters may be plugged due to solid deposition.
- Wellbore and hydraulic fracture cleanouts are planned prior to gas injection.
- Stage by stage cleanout operations will be performed using a specialized dual packer system and is anticipated to start ASAP.
- The cleanouts are expected to allow accessing more of the hydraulic fracture network enhancing oil production.

WILLISTON BASIN EOR PILOTS - DURANT

WILLISTON BASIN EOR PILOTS - DURANT

Project Budget: \$29.9 MM

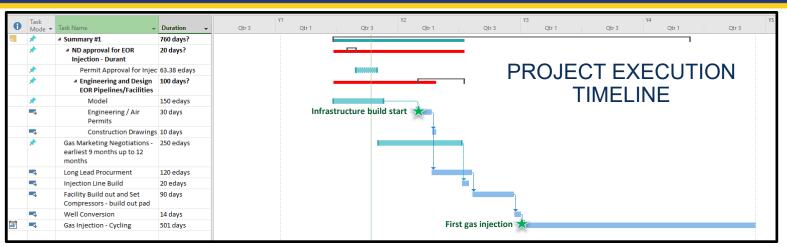
Add cleanouts*: \$3.3 MM Total Project Cost: \$33.2 MM

NDIC Share: \$9.8 MM (29.5%)

CLR Share: \$23.4 MM (70.5%)

✓ Project ready for execution

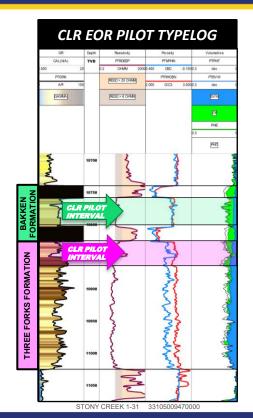
✓ First gas injection: 2Q 2026

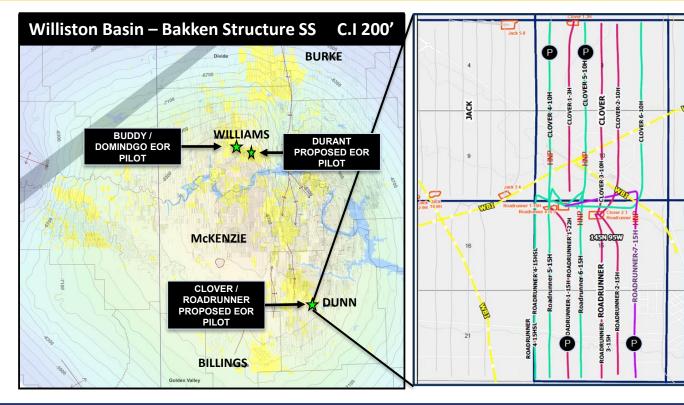

 Cost covered by Continental prior to formal execution start

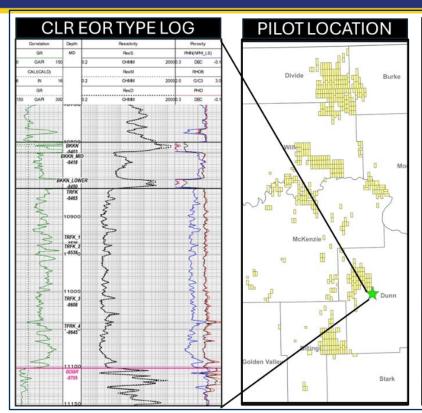
DETAILED COST ESTIMATE

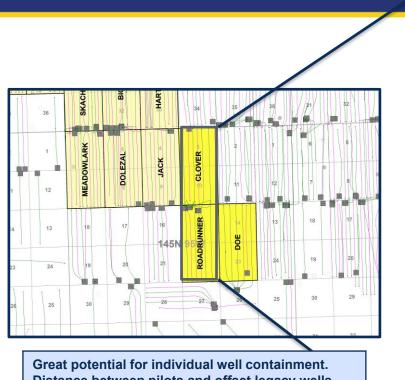
Project Associated Expense	NDIC Share	Applicant Share (Cash)	Applicant Share (In Kind)	Other Sponsor's Share	Total Project Cost
CAPEX: Engineering	\$175,687.50	\$175,687.50	\$0.00	\$0.00	\$351,375.00
CAPEX: Construction - Fabricated Items	\$733,000.00	\$733,000.00	\$0.00	\$0.00	\$1,466,000.00
CAPEX: Equipment	\$458,500.00	\$458,500.00	\$0.00	\$0.00	\$917,000.00
CAPEX: Construction - Building	\$808,437.50	\$808,437.50	\$0.00	\$0.00	\$1,616,875.00
CAPEX: Construction - Injection Facility	\$1,185,000.00	\$1,185,000.00	\$0.00	\$0.00	\$2,370,000.00
CAPEX: Construction - Production Facility	\$570,280.00	\$570,280.00	\$0.00	\$0.00	\$1,140,560.00
CAPEX: Construction - Well modifications	\$760,000.00	\$760,000.00	\$0.00	\$0.00	\$1,520,000.00
CAPEX: Construction - Pipeline	\$1,050,000.00	\$1,050,000.00	\$0.00	\$0.00	\$2,100,000.00
OPEX: Tracer analysis	\$256,000.00	\$256,000.00	\$0.00	\$0.00	\$512,000.00
OPEX: Gas purchase	\$0.00	\$0.00	\$9,300,000.00	\$0.00	\$9,300,000.00
OPEX: Line heaters - Lease	\$360,000.00	\$360,000.00	\$0.00	\$0.00	\$720,000.00
OPEX: Compressors - Fuel gas	\$300,000.00	\$300,000.00	\$0.00	\$0.00	\$600,000.00
OPEX: Booster compressor - Lease	\$300,000.00	\$300,000.00	\$0.00	\$0.00	\$600,000.00
OPEX: Main compressor - Lease	\$2,880,000.00	\$2,880,000.00	\$0.00	\$0.00	\$5,760,000.00
OPEX: Chemical Injection Equipment - Lease	\$0.00	\$250,000.00	\$0.00	\$0.00	\$250,000.00
OPEX: Foaming Agent purchase (Up to 2 cycles)*	\$0.00	\$695,000.00	\$0.00	\$0.00	\$695,000.00
Total Costs	\$9,836,905.00	\$10,781,905.00	\$9,300,000.00	\$0.00	\$29,918,810.00

DURANT EOR PILOT TIMELINE




Duration: ~ 42 months	
Month 1-9: Engineering, site preparation, and infrastructure build	Month 25-36: Continued gas conformance evaluation
Month 10-24: Initial gas injection evaluation of injectivity, containment, and uplift	Month 37-42: Laboratory data analysis, field performance evaluation, and reporting


PROPOSED EOR PILOT 2 CLOVER / ROADRUNNER



Reservoir	Middle Bakken	Three Forks				
Geology and Petrophysical Properties						
Lithology	Limestone: silty and partially dolomitic	Dolostone: tan interbedded with greenish-blue shale lenses: silty and argillaceous				
Depositional environment	Deposited in the late Devonian to early Mississippian in an offshore marine environment	Deposited in the late Devonian in an arid- evaporitic to shallow marine environment				
Clay content [%]	0.5-25	0.5-35				
Total organic content [wt%]	0.1 – 0.7	0.03-0.3				
Avg Porosity [%]	6.3	6.6				
Avg Water saturation [%]	26	54				
Permeability Range [nD]	300 – 600	130 – 650				
Fluid Properties						
GOR [SCF/STB]	650	650				
API gravity	38.3	38.3				
Viscosity [cp]	0.45	0.45				
In Place Volumes						
OOIP [MMSTOB / 640 ACRE]	9 - 10	10 - 15				

Great potential for individual well containment. Distance between pilots and offset legacy wells 500' – 750'

Clover / Roadrunner Layout

RoadRunner 7-15H

Vintage: 2024

RoadRunner Wells

Vintage: <= 2012</p>

Vintage: 2024

Third Party Gas Pipelines

- WBI Energy, Inc.

OP Drilled Wellbores

Pilot Wells P

Roadrunner 6-15H

Roadrunner 7-15H

- ✓ DURANT is a conservative analogue for the Clover / Roadrunner project
- ✓ Additional detailed engineering evaluation is currently ongoing

DURANT PROJECT ANTICIPATED UPLIFT

DURANT AND CLOVER-ROADRUNNER PILOTS

DURANT VS CLOVER / ROADRUNNER

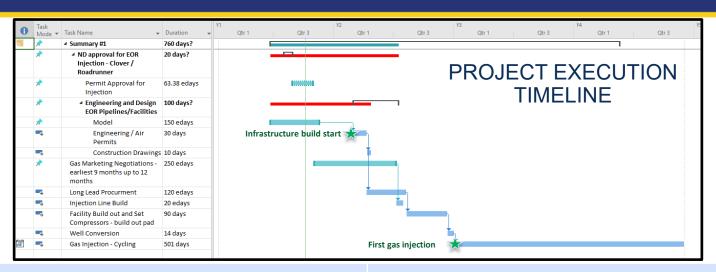
- ✓ Screening criteria indicates that the Clover / Roadrunner pilot should perform similar or better than the Durant pilot
- Proposed projects are in different areas of the basin that need to be evaluated

Screening Criteria	Observation	Durant	Clover / Roadrunner
Fluids / Miscibility	GOR/API:	1,450 / 45	650 / 38
OOIP	EUR [Bo/ft]:	21 - 36	38 - 52
Containment	Distance to nearest offset:	250 - 350	500 - 800
Depletion	Vintage:	2021	2024
Gas Source / Transmission	Proximity to pipeline [mi]:	2.1	0.7
Gas Source / Transmission	Gas Injection Availability:	20 - 23	25
Injectivity	Need for remediation (Excite tool):	Yes	No
Technical Evaluation	Modeling Available:	Yes	Ongoing

DETAILED COST ESTIMATE

Project Cost: \$26.9 MM

NDIC Share: \$8.8 MM (32.7%)


\$18.1 MM (67.3%) CLR Share:

Project ready for execution

First gas injection: 1Q 2027

		A! O.b	A	0410	A !! ! O !
Project Associated Expense	NDIC Share	Applicant Share	Applicant Share (In Kind)	Other Sponsor's Share	Applicant Share
OAREV. Fusing a sing	¢475 607 50	(Cash)	, ,		(In Kind)
CAPEX: Engineering	\$175,687.50	\$175,687.50	\$0.00	\$0.00	\$351,375.00
CAPEX: Construction - Fabricated Items	\$733,000.00	\$733,000.00	\$0.00	\$0.00	\$1,466,000.00
CAPEX: Equipment	\$458,500.00	\$458,500.00	\$0.00	\$0.00	\$917,000.00
CAPEX: Construction - Building	\$808,437.50	\$808,437.50	\$0.00	\$0.00	\$1,616,875.00
CAPEX: Construction - Injection Facility	\$1,185,000.00	\$1,185,000.00	\$0.00	\$0.00	\$2,370,000.00
CAPEX: Construction - Production Facility	\$570,280.00	\$570,280.00	\$0.00	\$0.00	\$1,140,560.00
CAPEX: Construction - Well Cleanouts	\$700,000.00	\$700,000.00	\$0.00	\$0.00	\$1,400,000.00
CAPEX: Construction - Well modifications	\$760,000.00	\$760,000.00	\$0.00	\$0.00	\$1,520,000.00
CAPEX: Construction - Hot Tap & Pipeline	\$875,000.00	\$875,000.00	\$0.00	\$0.00	\$1,750,000.00
OPEX: Tracer analysis	\$256,000.00	\$256,000.00	\$0.00	\$0.00	\$512,000.00
OPEX: Gas purchase	\$0.00	\$0.00	\$8,400,000.00	\$0.00	\$8,400,000
OPEX: Line heaters - Lease	\$360,000.00	\$360,000.00	\$0.00	\$0.00	\$720,000.00
OPEX: Compressors - Fuel gas	\$150,000.00	\$150,000.00	\$0.00	\$0.00	\$300,000.00
OPEX: Booster compressor - Lease	\$300,000.00	\$300,000.00	\$0.00	\$0.00	\$600,000.00
OPEX: Main compressor - Lease	\$1,440,000.00	\$1,440,000.00	\$0.00	\$0.00	\$2,880,000.00
OPEX: Chemical Injection Equipment* - Lease	\$0.00	\$250,000.00	\$0.00	\$0.00	\$250,000.00
OPEX: Foaming Agent purchase (Up to 2 cycles)*	\$0.00	\$695,418.00	\$0.00	\$0.00	\$695,418.00
Total Costs	\$8,771,905.00	\$9,717,323.00	\$8,400,000.00	\$0.00	\$26,889,228.00
* Foam will be tested if deemed feasible and necessary					

Duration: ~ 42 months

Month 1-9: Engineering, site preparation, and infrastructure build

Month 10-24: Initial gas injection evaluation of injectivity, containment, and uplift

Month 25-36: Continued gas conformance evaluation

Month 37-42: Laboratory data analysis, field performance evaluation, and reporting

CONTINENTAL'S LEADERSHIP

- Continental has established itself as one of the leaders in the Unconventional EOR space.
- Continental actively promotes collaboration and knowledge share with other leading operators in UEOR.

Oxy's letter of support:

"In addition to their technical expertise, Continental has demonstrated a commendable commitment to collaboration. They have actively engaged with other operators like us and others in the region to tackle the complex challenges associated with EOR in unconventional reservoirs."

Jeff Simmons,

Senior Vice President Technical and Operations Support Chief Petrotechnical Officer, OXY

SUMMARY

PROJECT COST STRUCTURE & TIMELINES FOR FIRST GAS INJECTION

PROPOSED PILOT	COUNTY	NDIC SHARE [MM]	CLR SHARE [MM]	TOTAL COST [MM]	1 ST GAS INJECTION	WORKING GAS VOL [MMSCF]
DURANT	WILLIAMS	\$9.8	\$20.1	\$29.9	2Q 2026	3,100
CLOVER / ROADRUNNER	DUNN	\$8.8	\$18.1	\$26.9	1Q 2027	2,700
TOTALS		\$18.6 (32.7%)	\$38.2 (67.2%)	\$56.2		

- > Two large-scale pilots in two different areas of the basin
- Investments exceed \$56MM. NDIC contributions of \$18.6 MM (32.7%)
- > First Gas Injection is expected ~ 9 months after starting construction
- Projects will report results from initial cycles 24 months after starting construction

FINAL REMARKS

- ➤ Continental proposes two large-scale world-class Unconventional EOR (UEOR) pilots in two different areas of the Williston Basin. These projects have the potential for changing the field development and production landscape.
- ➤ The proposed pilots alone will bring investments to North Dakota valued at ~ \$60MM.
- ➤ EOR investments have the potential to substantially increase revenue from existing well production. Our conservative size of the prize estimate for EOR in the Williston basin is ~ 3 billion barrels.
- ➤ Continental is building upon experience acquired in the Anadarko, Williston, and Powder River basin pilots. Continental is one of the most successful operators in the Unconventional EOR space. Few operators have Continental's Unconventional EOR experience and expertise.

FINAL REMARKS

- Continental explores and promotes the use of new technology and will consider the use of foam (if necessary).
- Continental proactively promotes collaboration with leading operators in the UEOR space.

BACKUP

