

Devon Operated Position – Williston Basin

- Significant Williston Operations
 - 400K+ net acres
 - 2000+ operated producing wells
 - 3 rigs currently active
 - Multiple years of high quality inventory at planned development pace
 - Currently evaluating multiple EOR options to extend asset runway and improve recovery

Project Overview and strategic objectives EOR Surfactant Pilot

Project Overview

- Goal: Pilot test surfactant-based EOR in Middle Bakken and Three Forks formations in the Williston Basin.
 Study and select appropriate surfactant technology
 - Identify and rank candidate wells
 - Optimize surfactant placement methodology
 - Deploy treatments and monitor results
- Project Duration:24 months
- Total Project Cost:\$3.37MM

Strategic Objectives

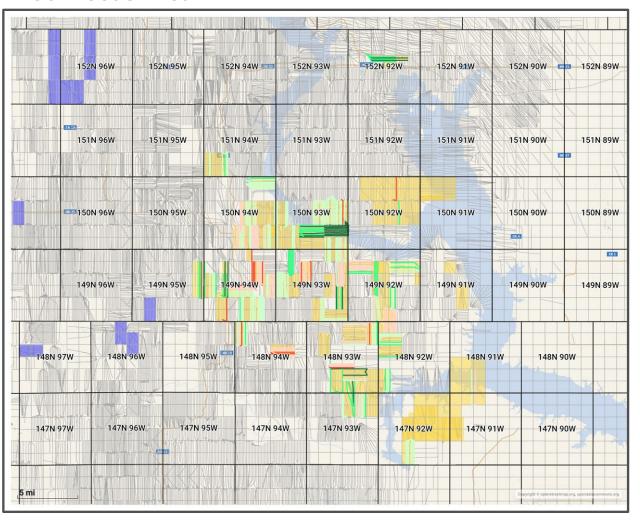
- Quantify surfactant injectivity and operational feasibility.
- Utilize laboratory and analysis data to inform pilot design.
- Evaluate surfactant-reservoir contact and effectiveness.
- Assess economic feasibility and scalability for broader deployment.

Surfactant EOR – General Technical Approach

Design, Implement, & Assess

- Key mechanisms for improving recoveries
 - Recovery of trapped residual oil
 - Alter wettability/interfacial tension to lower capillary pressures
 - Select formation-compatible surfactants to enhance imbibition & displacement
- Reduce technical uncertainty
 - Lab screening/optimization ensures effective, stable surfactants are deployed
 - Generated technical data informs best product selection
- Chemical EOR enables faster deployment using common operational methods

Lab Testing


- Premier/Corex
 - Basic stability/performance (glass)
 - Compatibility with reservoir fluids at formation temperature
- University of Kansas
 - Stability/performance at reservoir conditions
 - Recovery measurement with Devon core/fluids
 - Quantify product loss and optimize dosage

Candidate Selection

Initial Pilot Screening

Initial Focus Area

Key Screening Criteria

- Completions (2018+): ~290 wells in 60 DSUs
- Priority: 1 2 mile laterals
- Avg. Temperature: 235°F
- Avg. Pressure: 7,000 psi
- Avg. Salinity / Iron: 300k ppm / 130 ppm
- Oil Properties: API 41; Paraffin .5-1%
- Avg. WOR / TVD: .5-3.0 BW/BO / 10,500'
- Lift type: ESP Preferred

Project Phases – EOR Surfactant Pilot

Phase 1: Foundation & Design

Targeting End of Q1 2026

Lab Work (Underway)

 Screening surfactant stability and testing performance on Devon core under reservoir conditions.

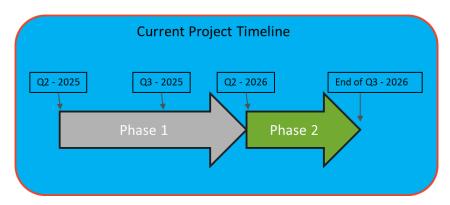
Candidate Selection

 Prioritizing wells with higher BHP and ESPs for quicker recovery.

Treatment Design

 Defining treatment methodology, volumes, and key sensitivities based on lab results.

Phase 2: Pilot Implementation


Targeting Q2 2026

Field Execution

 Pumping a minimum of 3 jobs to test the designed surfactant treatments in the selected wells.

Scalability Assessment

 Potential to expand the pilot to 6 jobs depending on initial volumes, cost, and performance.

Field Monitoring

Data Collection for Surfactant EOR Optimization

- Establish productivity baseline
- Fluid Properties (viscosity, GOR, API Gravity)
- Post Injection Monitoring
 - Fluid sample collection: daily (first 5days), weekly (next 2-weeks), then monthly (4 months)
 - Track productivity & production trends for designs tested
 - Product
 - Dosing & volume injected
 - Soak vs. non-soak
 - Rates and drawdown

- Analyze produced fluid chemistry (scaling, salinity, emulsion, viscosity, GOR, API gravity)
- Economics
 - Monitor payout relative to uplift achieved

- Track product type, concentration, and total volume injected
- Compare results by reservoir (Middle Bakken vs. Three Forks)
- Operations

- Document unloading methods (rods, gas lift, ESP)
- Track production chemical usage
- Record separation and carryover events

Estimated Project Costs

Requested Match	\$1.53MM
Estimated Total	\$3.37MM
 Contingency 	\$0.4MM
 Pilot Execution 	\$2.77MM
 Diagnostics and data collection 	\$0.121MM
 Laboratory work and simulation 	\$0.153MM

Note: Lab work costs will exceed the estimated amount by about \$100K. These are not cost overruns. Scope of lab testing has changed based on initial stability screening.

Overall budget still seems reasonable for this pilot.