

Critical Challenges. Practical Solutions.

EERC. NORTH DAKOTA. Energy & Environmental Research Center (EERC)

Breaking New Ground in Flaring Reduction

North Dakota Oil and Gas Research Program Clean Natural Gas Capture and Emissions Reduction Program 1/24/2025

> Darren D. Schmidt, P.E. Assistant Director, Energy, Oil & Gas

© 2024 University of North Dakota Energy & Environmental Research Center

Request Summary

Funding Requested: Total Value of Project: Duration: PI: Organization: Cost Share Partners:

Industry Support:

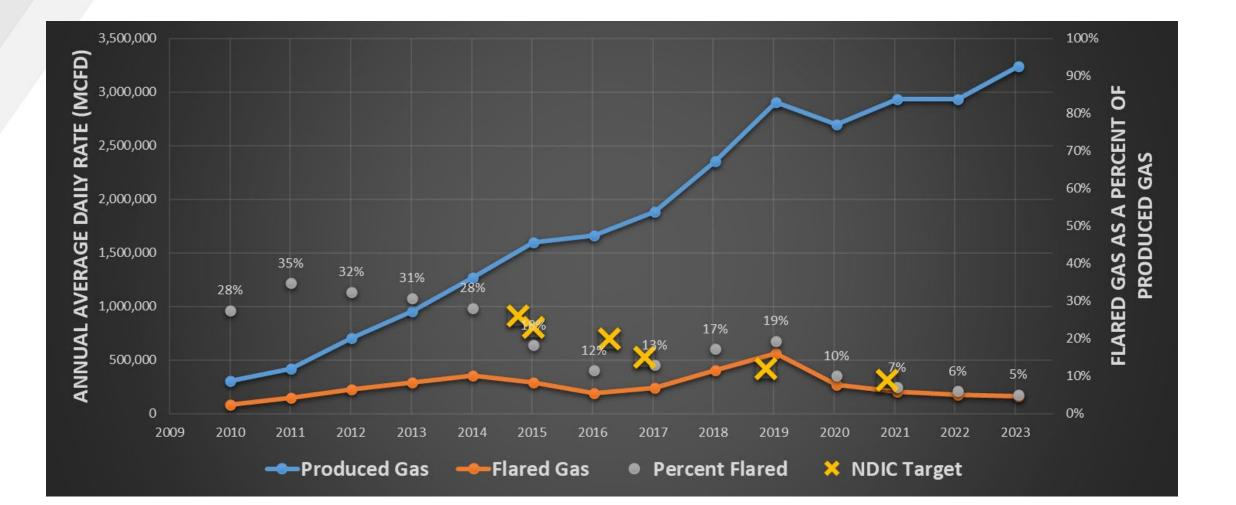
\$2,566,341 \$5,132,682 12-months Darren Schmidt EERC Steffes, LLC Advanced Flow Solutions, Inc. Hess Petro Hunt

Objective: Conduct a pilot project that accelerates the adoption of new technology for the industry to eliminate flaring. **Scope:** Deploy 30 gas capture units on well pad facilities. **Results:** Fulfill SB2089*, Specifically address the challenges with the remaining volume of flared gas in North Dakota.

*SB2089 – Incentive payment for projects that capture or utilize natural gas which would otherwise be flared. SB2089 replaces a prior tax incentive for similar projects.

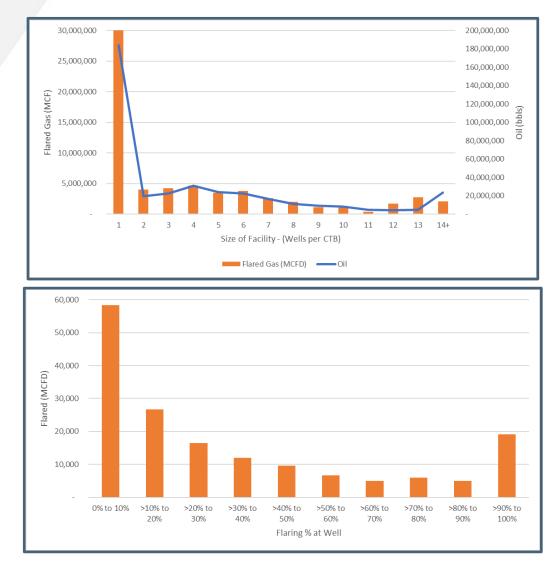
Critical Challenges. Practical Solutions.

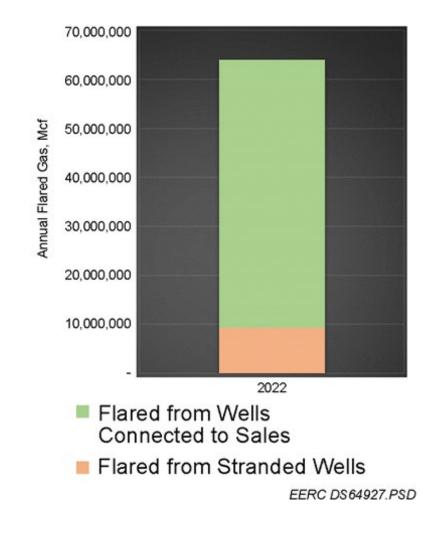
Requirements of the Clean Natural Gas Capture and Emissions Reduction Program – Standards of Success


Comprehensive report to the commission to include:

- 1. Summary of work performed
- 2. Photos of installed equipment
- 3. Documentation of project costs and matching cost share
- 4. Locations of installed equipment
- 5. Rates and volumes of gas captured
- Delivery to include interim and final reporting.
- Success based on completed installation and operation of 30 units and commensurate reporting.

Critical Challenges. Practical Solutions.

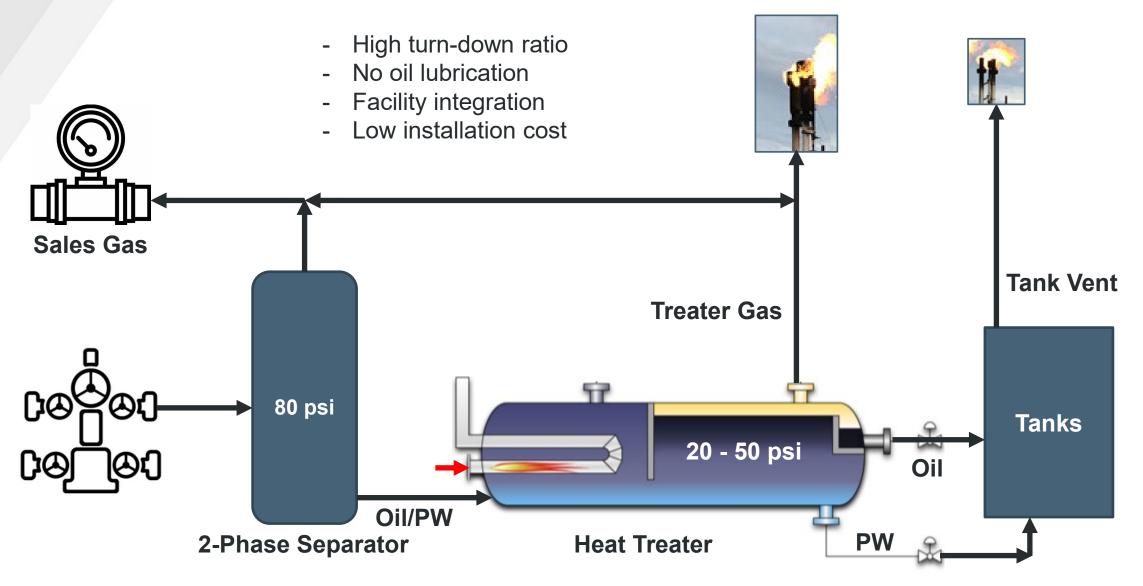

ND Flaring History



MAJORITY OF FLARED GAS IS:

- 1. Not stranded.
- 2. Flared on non-comingled sites.
- 3. From facilities flaring < 10% of produced gas.

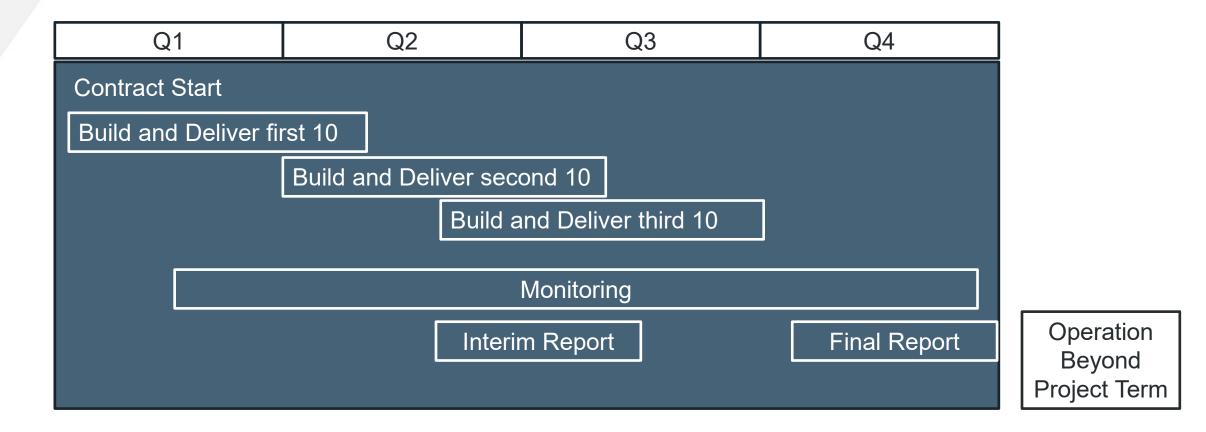
CAPTURING THE REMAINING FLARED GAS IN NORTH DAKOTA REQUIRES NEW TECHNOLOGY



TECHNOLOGY PROGRESS

Joint development Industry 2021 Signed **Eight patents** agreement participation commercial issued license agreement (BPOP) ND OEM 2023-2024 2021 2022 2022-2023 **DOE** support for Laboratory testing First prototype Early field work prototype testing 2025 Proposal **Gas Capture Grant – Field Pilot**

How do we innovate?



Present configuration

- 50 MCFD @ pressure ratio of 70 psi
- Treater boost 30 psi to 100 psi
- Max. 120 psi
- Option to capture tank vapors & reuse as fuel.
- Winterized
- C1D1
- PLC control

Schedule

Anticipated Results

- Further the grant incentive for projects that capture gas that would otherwise be flared.
- Provide a meaningful implementation pilot to cover a diversity of wellsites and facility types and a variety of operators to demonstrate gas capture.
- Reduce the cost and risk for operators looking to adopt new technology and accelerate commercial deployment.
- Specifically address the remaining gas flaring in ND, especially economically challenged gas.

Value to North Dakota and Industry

Monthly Production July 2024

Gas captured 3,245,517 MCFD (94%) Gas flared 217,343 MCFD (6%) Flared gas @ \$5.00/MCF = \$33.4 million Tax rate @ \$0.0646/MCF = \$435,000

Extrapolated to annual: Flared gas = \$400 million

Tax = \$5.2 million

Compliance – 40CFR60, 0000b, 0000c

- 1. Super emitter program 100kg/hr
- 2. Elimination of routine flaring (phase out)
- 3. Methane fee \$900/\$1200/\$1500 per ton
- 4. Advanced leak detection and monitoring
- 5. Liquid unloading requirements
- 6. Process controllers and pumps
- 7. Storage tanks
- 8. P&A requirements
- 9. Rules that push c to b

Why the project is needed.

- ND's gas capture policy has been a success. The industry has responded.
- What's left to capture requires new tools the industry does not have today.
- ND will be highly competitive as a low-carbon producer.
- The present flaring volumes are **geographically dispersed** across **many wells** producing at **low rate** which presents economic challenges for conventional technology.
- This project helps accelerate new flare elimination technology with measurable reductions.

Project Associated Expense	NDIC Share (Cash)	Industry Share (In-kind)	Total Project
Labor	\$421,720	\$0	\$421,720
Travel	\$87,062	\$0	\$87,062
Equipment > \$5000	\$1,500,000	\$0	\$1,500,000
Supplies	\$30,000	\$0	\$30,000
Subcontractor – TBD Site Support	\$80,000	\$0	\$80,000
Communications	\$78	\$0	\$78
Printing & Duplicating	\$100	\$0	\$100
Laboratory Fees & Services			
Document Production Service	\$5,068	\$0	\$5,068
Technical Software Fee	\$17,543	\$0	\$17,543
Engineering Services Fee	\$1,597	\$0	\$1,597
Field Safety Fee	\$61,594	\$0	\$61,594
Outside Lab – Gas Sampling	\$20,000	\$0	\$20,000
Total Direct Costs	\$2,224,762	\$0	\$2,224,762
Facilities & Administration	\$341,579	\$0	\$341,579
Total Cash Requested	\$2,566,341	\$0	\$2,566,341
In-Kind Cost Share			
Advanced Flow Solutions	\$0	\$1,824,500	\$1,824,500
Steffes	\$0	\$741,841	\$741,841
Total In-Kind Cost Share	\$0	\$2,566,341	\$2,566,341
Total Project Costs	\$2,566,341	\$2,566,341	\$5,132,682

Darren Schmidt, P.E. Assistant Director, Energy, Oil & Gas Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000

