

Energy & Environmental Research Center (EERC)

LIQUIDS GATHERING PIPELINE STUDY: PHASE III

Oil & Gas Research Program
Bismarck, North Dakota
Tuesday, December 18, 2018

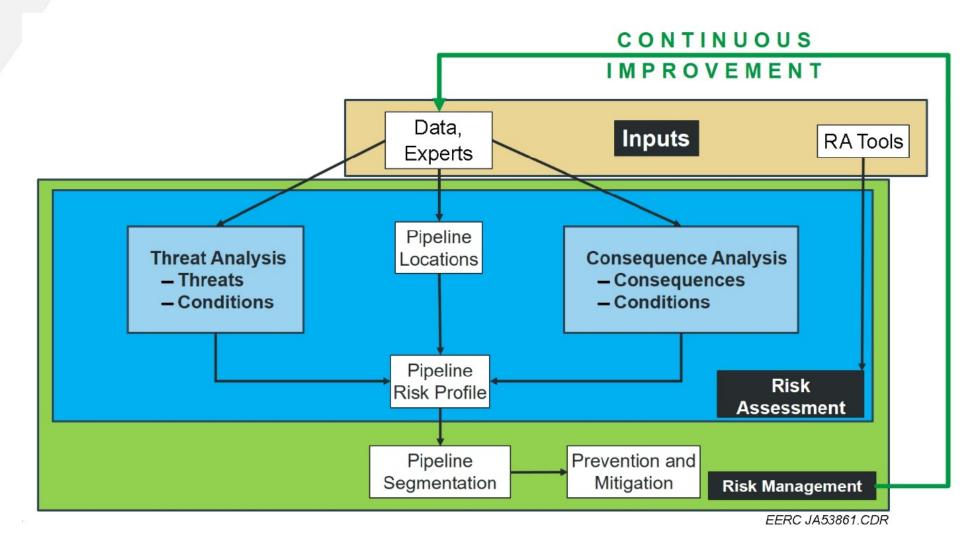
Jay C. Almlie
Principal Engineer
EERC

EERC Pipeline Study in Three Phases

- HB 1358 (2015)
 - Phase I: Foundational information on status of ND liquids gathering pipelines
 - Phase II: Report on field demonstrations of various leak detection approaches
- HB 1347 (2017)
 - Phase III: Report on risk assessment for liquids gathering pipelines, and provide a snapshot of emerging technologies for leak detection and leak prevention

Phase III Scope of Work

- EMERGING TECHNOLOGIES
 - Identification of emerging technologies to enhance pipeline safety and reliability
- RISK ASSESSMENT
 - Pipeline stakeholder group
 - Review risk assessment methodologies
 - Strategies for continuous improvement


Risk Assessment

What Does the Study Tell Us about Risk Assessment Applied to Liquids Gathering Pipelines?

- Defines a common language surrounding risk assessment
- Provides key characteristics of an effective risk assessment
- Demonstrates application of various approaches to risk assessment
- Ties ND interest in this topic to identical interests being explored in the PHMSAregulated world

The Landscape of Risk Assessment

Desirable Pipeline Risk Assessment Characteristics

	Identifies pipeline threats.	
Exclusive to Risk Assessment	Estimates the likelihood (or frequency or probability) of failure along the pipeline based upon past and present conditions of the pipeline and surroundings.	
	Identifies consequences of pipeline failure.	
	Estimates the severity or magnitude of different consequences along the pipeline.	
	Relates information to pipeline location.	
	Estimates risk along the pipeline.	
	Verifies the consistency of estimates with actual performance.	
	Is updated with new information as pipeline and surrounding conditions change.	
Overlapping Risk Assessment and Risk Management	Divides pipelines into segments based upon risk.	
	Prioritizes pipeline segments based upon risk.	
	Evaluates the effectiveness of past changes and other risk management actions.	
	Predicts or has the capability to predict risk-related outcomes.	
General	Information, procedures, and documentation are of adequate quality for the purpose of risk management and assessment.	

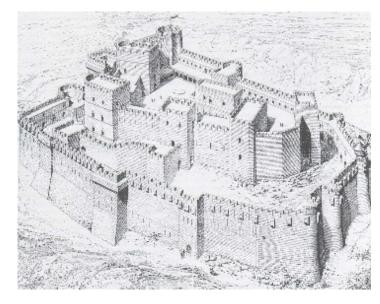
Spectrum of Pipeline Risk Modeling Approaches

Approach	Examples	Effort	Description
Subject Matter Experts	Qualitative, semiquantitative	\$	Subjective risk estimates
Relative Risk	Matrix, indexing (semiquantitative)	\$\$	Risk estimates that can be compared only with those from very similar methods and situations
Scenario- Based	Event tree, fault tree	\$\$	Depicts event sequences leading to end states and relates likelihood of events to end-state consequences
Probabilistic	Quantitative	\$\$\$	Risk estimates that can be compared with risk estimates from other quantitative methods and situations

Conclusions

- The reliability, usefulness, and resources demanded for each approach to risk assessment vary greatly.
- Each pipeline operator must determine what level of accuracy and uncertainty is both practical and sufficient for each specific application.
- Any systematic method can be useful. All methods provided some insight into the relative risk.
- When applied correctly, all methods exhibit surprising consistency.

Emerging Technology

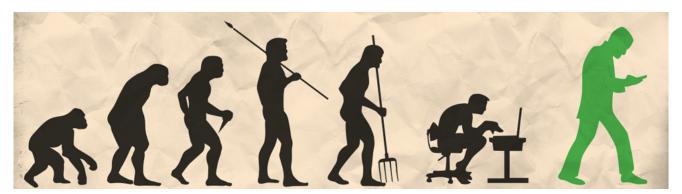

MOST IMPACTFUL TO SAFE PIPELINE OPERATION

- Proper installation of pipelines
- Call before you dig

 Defense in depth (multiple layers of protection for challenging situations)

Emerging Technology for Liquids Gathering Pipelines

More Than a Toy Box!


Less Than a Silver Bullet!

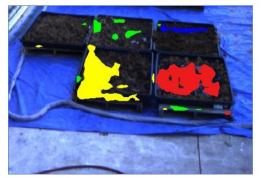
Governor Burgum challenged industry in May 2017 to think outside the box and apply new technology to conquer the problem of pipeline leaks.

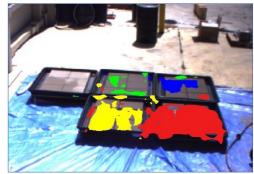
Emerging Technology – A Snapshot in Time

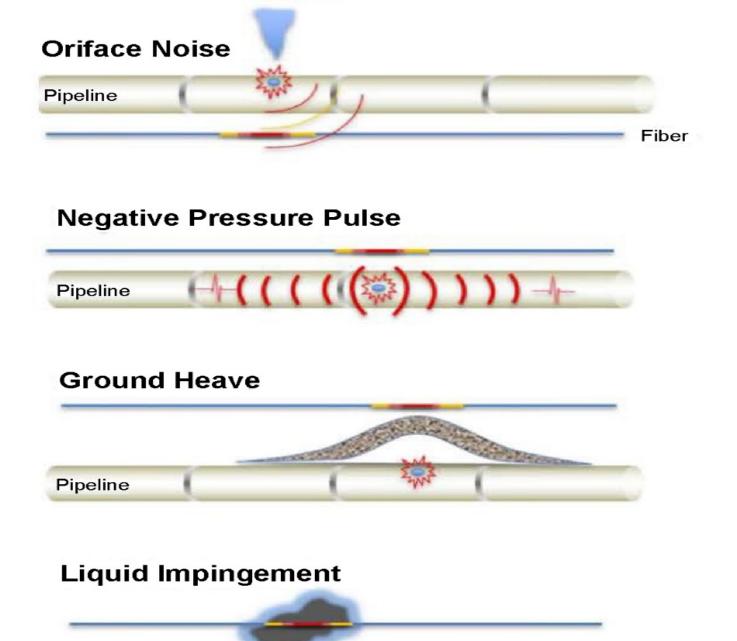
- Application of leak prevention and leak detection technology to liquids gathering pipelines is more complex than application to transmission lines.
- New technology to prevent and detect pipeline leaks is being developed <u>right now</u>.
 Why?
 - Rapidly expanding new market for technology solutions suited to small-diameter, previously unregulated liquids gathering pipelines.
 - New regulatory pressures on liquids gathering pipelines.
 - Intense public focus on pipelines in recent years.

A Sampling of Emerging Technologies

- Artificial intelligence
- Fiber optics
- Miniaturized in-line inspection
- Dedicated leak detection for HCAs
- Resulting from this focus on emerging technology:







ADVANCED SCIENCE. APPLIED TECHNOLOGY.

©SOUTHWEST RESEARCH INSTITUTE SWITLORG

Pipeline

Jay C. Almlie Principal Engineer jalmlie@undeerc.org 701.777.5260 Energy & Environmental
Research Center
15 North 23rd Street, Stop 9018
Grand Forks, ND 58202-9018

www.undeerc.org 701.777.5000 (phone)

