

SolSpec

Infrastructure

People

VO

Environment

North Dakota Goals for Oil & Gas

Industry Vitality + Public Health + Environmental Stewardship

- Innovation instead of Regulation
- UAS BVLOS program for Bakken

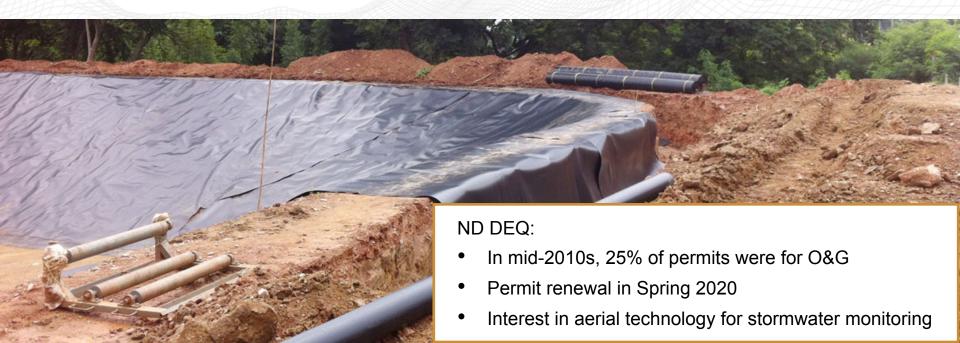
Director Lynn Helms:

 Adoption of imaging technologies to increase efficiencies in well site reclamation program

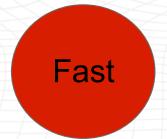
The Problem

- 15,571 active wells that must be reclaimed
- Process can take 3-10 years
- 1,500 wells in reclamation status
- NDIC endeavors to inspect each site annually
- 32 field NDIC field inspectors
- ND Bakken spans 30,000 square miles

The Problem


- Unknown site conditions
- Backlog site reviews
- Scheduling delays
- Subjective inspection
- Delayed site clearance & bond release

The


Prto Pronstruction Stormwater General Permit

- Operator inspection every 14 days & within 24 hrs of storm event
- Site stabilization & 70% of pre-existing cover in 3 years, then 1 inspection/mo

The Pr Accurat e

Chea p

Similar to OGRP project G-037-73, 2016

Location 1 Aerial Vegetation Survey - Cover Classification

Well Pad: Location 1 Date of Assessment: 9/2/2016 Total Reclaimed Acres: 3.6

Legal Description: Section 16, Township 9N, Range 59W

Legend

♦ Bare Ground Interim Cover

nd Interim Cover Sensor: NIR R
Baseline Cover GSD: 2.5 cm

UAV: F550 Hex Sensor: NIR Red Notch Filter GSD: 2.5 cm Altitude: 60 meters

ı		Location 1 Vegetative Area					Location 1 Percent Cover			
	Evaluation Type	Bare Ground (m²)	Undesirable (m²)	Native Cover (m²)	Total Area (m²)	Bare Ground (% Cover)		Native (% Cover)	Percent of Baseline Native Cover	
ı	Baseline Interim Cover	120	16	644	780	15%	2%	83%	83%	
ı	Interim Cover	167	4387	9888	14442	136	30%	68%		

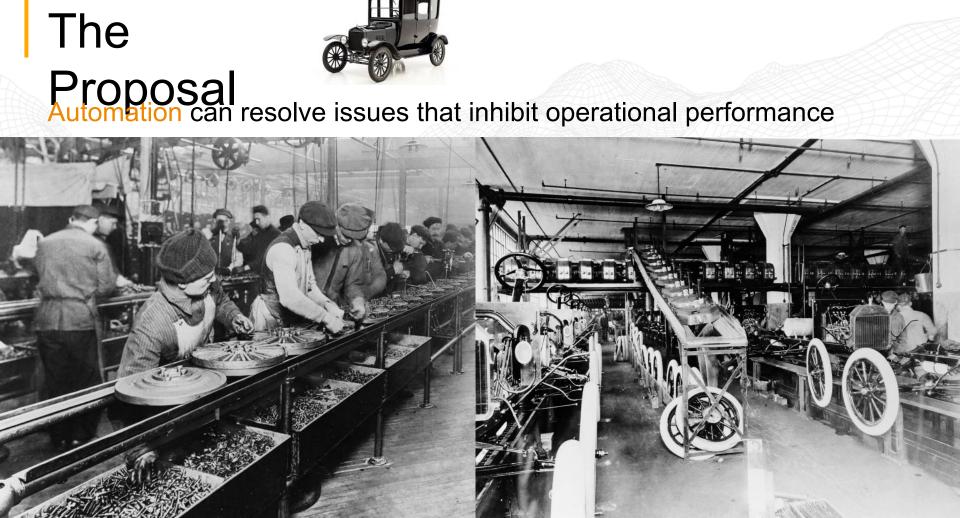
Native

Undesirable

	Ground	Validation Data	(Known Cover Types)		
Class Types	Native	Undestrable	Bare Ground	Row Total	
Native	10	0	4)4 8	
Undesirable	1	7	0		
Bare Ground	0	0	0	0	
Column Total	11	7	4	22	
Producer Accuracy	10	7	0	77%	

Location 1 - Error Matrix

The Problem OGRP project G-43-01, 2018


When it comes to aerial imagery...

"Huge amounts of data can be collected ...but those data require appropriate analysis.

To make analysis of large quantities of data economical, automated data processing and analysis must be employed."

GOAL

Develop & validate a suite of automated analytics that

bring remote reclamation assessment technology to operational

capacity for industry, agencies, & the interested public of North Dakota.

GOAL

Maximize ROI for North Dakota by addressing NDIC Research Priorities:

Optimum data storage architecture

Deriving decision support tools from gross data

Imagery provided to the manager for decision making

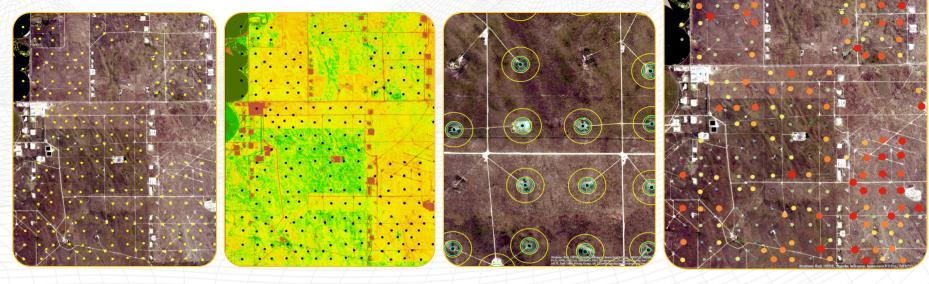
Analysis of cost avoidance against current process

Imagery tools that enable cost estimates & budgeting to complete reclamation

Trusted third-party data organization system enabling industry & regulators to access imagery

OBJECTIVES

Model Development I: Remote Aerial Inspection Toolkit


- Preliminary Vegetation Cover Comparison
 - USDA National Agricultural Imagery Program (NAIP)

The

Preiming Vegetation Cover Comparison 2,219 Whiting well sites

Well Locations

Vegetation Reflectance

Pad **Analysis**

Site Prioritization

The

Model Development

Data Acquisition

Model Validation Model Automation Cost-Effectiveness Analysis

ISIGHT RPV SERVICES

Aerial Data Collection

100 Whiting well sites

- 40 partially reclaimed active wells
- 50 plugged well sites in reclamation progress
- 10 fully reclaimed well sites

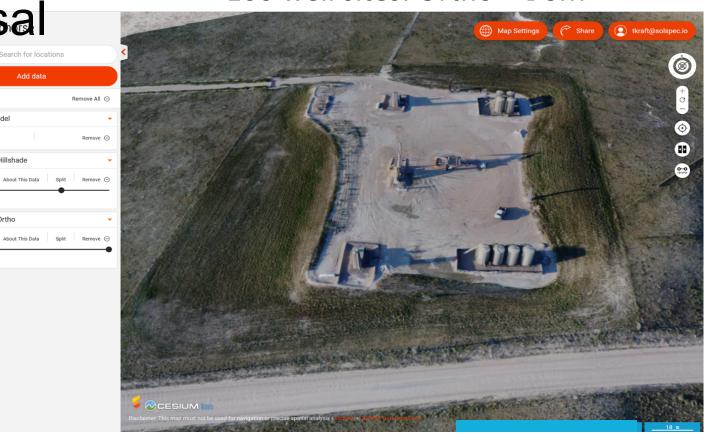
OBJECTIVES

Model Development II: Remote Aerial Inspection Toolkit

- Preliminary Vegetation Cover Comparison
- Aerial Reclamation Inspection Comparison
 - Vegetative Continuity Comparison
 - Infrastructure Identification
 - > Problematic Surface Hydrology Identification
 - Topographic Contouring Assessment
 - Volumetric Measurement

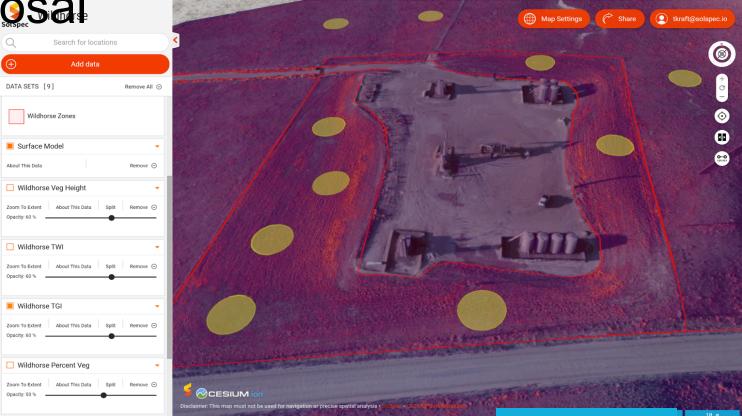
DATA SETS [3] Surface Model

About This Data


Wildhorse Hillshade

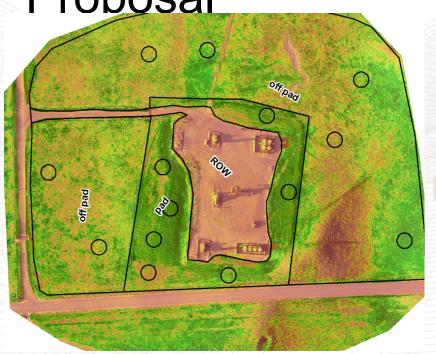
Wildhorse Ortho

Search for locations Add data



Vegetative Continuity Comparison 100 well sites: Ortho + DSM

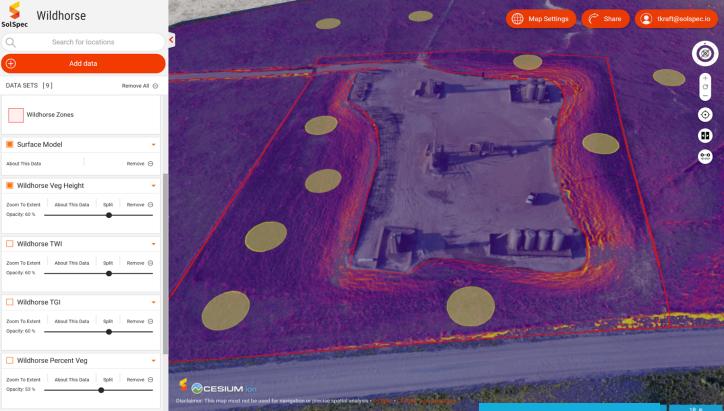
Vegetative Continuity Comparison 100 well sites: Vegetation Spectrum



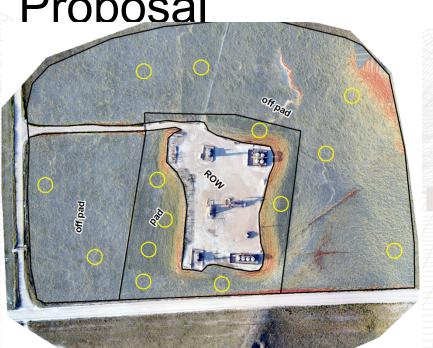
The

Vegetative Continuity Comparison 100 well sites

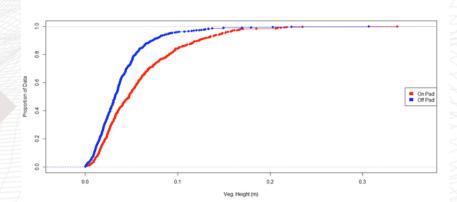
Proposal


Vegetation Spectrum Assessment

The Proposition



Vegetative Continuity Comparison 100 well sites: Vegetation Structure



Vegetative Continuity Comparison 100 well sites

Vegetation Structure Assessment

The Proposal Indianase

Infrastructure Identification 100 well sites

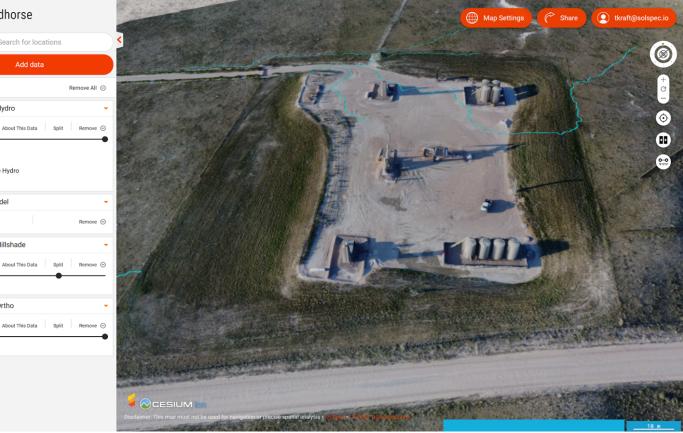
The Proposal dhorse

Problematic Surface Hydrology 100 well sites

Search for locations

DATA SETS [4]

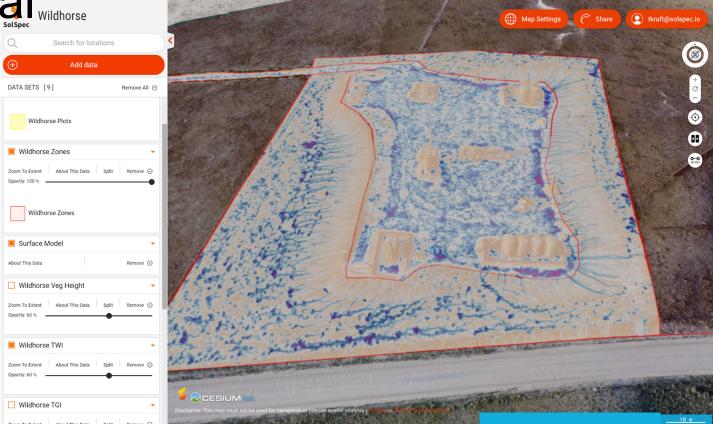
Wildhorse Hydro


Wildhorse Hydro

Surface Model About This Data

■ Wildhorse Hillshade

Wildhorse Ortho


Add data

The Wildhorse Wildhorse

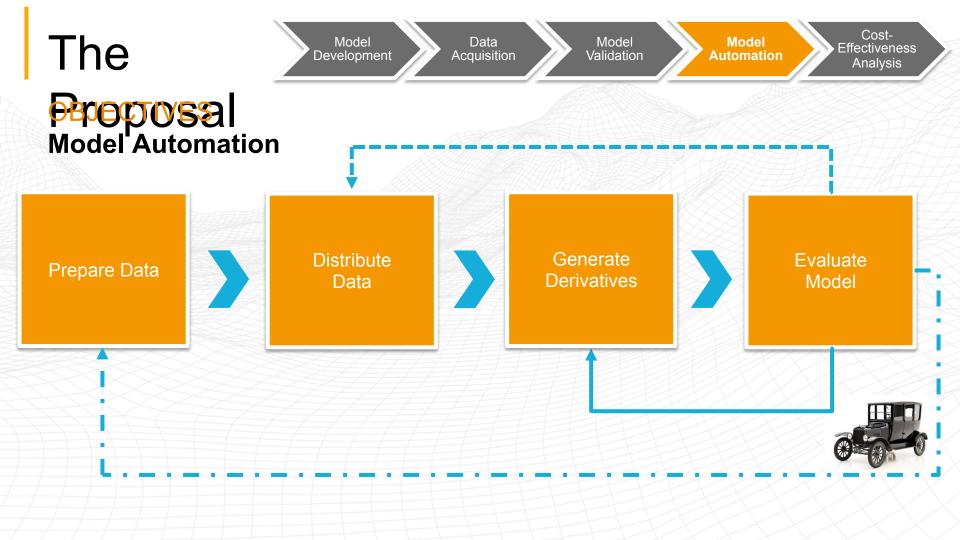

Topographic Contouring Assessment 100 well sites

The Proposal Indiana

Volumetric Measurement 100 well sites

OBJECTIVES

Model Validation: Remote Aerial Inspection


OOIKIL

Comparison between preliminary & aerial assessments

Ground truthing of 30% aerially assessed sites DURARDD

NDIC inspection of 20% of aerially inspected sites

Measure effectiveness of toolkit's ability to remotely determine reclamation

OBJECTIVES

Cost-Effectiveness Analysis △ 1 △

Evaluate costs & outcomes for Whiting & NDIC against status quo

- Control group: >10 Whiting sites certificated in last 5 years
- Experimental group: 100 Whiting sites, 5 double-sampled w/ BLVOS
 NAMPOUTS: time, equipment, mobilization, information management, etc.
 - Outcomes: Data quality, quantity, consistency, etc.

RESULTS & DELIVERABLES

Model Development

 Analytic algorithms capable of efficiently intaking large data volumes & producing operational decision support information for reclamation

Data Acquisition

Quality aerial imagery for 100 Whiting well sites, 50 on NDIC inspection list

Model Validation

 Statistical measurement of accuracy that provides certainty & confidence in remote reclamation assessment method

RESULTS & DELIVERABLES

Model Automation

 Efficient, scalable automated models capable of analyzing large quantities of geospatial data per OGRC Project G-43-01 recommendations

Cost-Effectiveness Analysis

- Evidence substantiating the business case for remote reclamation inspection vs. traditional procedures
- Preliminary analysis of multirotor vs. BVLOS-capable fixed-wing UAV

Toolkit of efficient, scalable, statistically robust methods for remotely analyzing reclamation success, including:

- Reestablishment of background vegetation
- Remediation of land contours
- Removal of infrastructure

Bring remote reclamation assessment technology to operational capacity for industry, agencies, & the interested public of North Dakota

Project Activity & Responsible Party	NDIC's Share	Description	Applicant's Share (In-Kind)	Partners' Share (In-Kind)	In-Kind Description	
		Labor at \$80/hour for 281.25				
Model Development - SolSpec	\$ 22,500	hours	\$ 35,000		Labor at \$80/hour for 438 hours	
		Labor at \$100/hour for 190				
Model Automation - SolSpec	\$ 19,000	hours	\$ 22,000		Labor at \$100/hour for 220 hours	
					Mobilization at \$20k; 5 sites flown with fixed-	
		Labor, equipment at \$700/			wing UAV at \$700/site; Site discount at \$100	
Aerial Data Collection - ISight	\$ 70,000	site for 100 sites		\$ 34,000	site for 105 sites	
Aerial Data Collection -						
Whiting				\$ 32,000	Site manager at \$320/site for 100 sites	
Ground-Truthing Inspection -		Labor, equipment at \$896.66/				
Duraroot	\$ 26,900	site for 30 sites				
Ground-Truthing Inspection -						
Whiting				\$ 9,600	Site manager at \$320/site for 30 sites	
		Labor at \$80/hour for 56.25				
Model Validation - SolSpec	\$ 4,500	hours	\$ 10,500		Labor at \$80/hour for 131.25 hours	
		Labor at \$80/hour for 118.75				
Model Refinement - SolSpec	\$ 9,500	hours	\$ 12,500		Labor at \$80/hour for 156.25 hours	
Project Management &		Labor at \$90/hour for 120				
Reporting - SolSpec	\$ 10,800	hours	\$ 12,000		Labor at \$90/hour for 139 hours	
		Applicant's & Partners'				
		Subtotal Share:	\$ 92,000	\$ 75,600		
		Applicant's & Partners'		Total Project		
NDIC's Total Share:	\$ 163,200	Total Share:	\$ 167,600	Cost:	\$ 330,800	

The

TIMELIN

Key win stones	Responsible Party	Month(s)	Year(s)
Model Develop number of the Model Develop: preliminary vegetation cover comparison, vegetative continuity comparison, infrastructure	SolSpec	Feb-Aug	2020
dentification, problematic surface hydrology identification, topographic contouring assessment, & volumetric measurement models.			
Model Automation			
For each model: automate data aggregation, dissemination, derivative generation, analytic process, & internal validation.	SolSpec	Feb-Aug	2020
Aerial Data Collection			
Collect aerial imagery with UAS: 100 sites	ISight	Aug-Sept	2020
Manage access to & supervise site: 100 sites	Whiting	Aug-Sept	2020
Model Validation			
Perform ground-truthing of field inspections: 30 sites	Duraroot	Aug-Sept	2020
Manage access to & supervise site: 30 sites	Whiting	Aug-Sept	2020
Perform agency field inspections: 20 sites	NDIC	Aug-Oct	2020
Test & refine models according to field observations	SolSpec	Nov-April	2020-2021
Reporting			
Quarterly Progress Report 1	SolSpec	March	2020
Quarterly Progress Report 2	SolSpec	June	2020
Quarterly Progress Report 3	SolSpec	Sept	2020
Quarterly Progress Report 4	SolSpec	Dec	2020
Quarterly Progress Report 5	SolSpec	March	2021
Final Report; Delivery of Data, Full Study Results, & Toolkit Availability; Press Release	SolSpec	June	2021
Briefings to NDIC/OGRC	SolSpec	As requested	2020-2021

